
Lazy Database Replication with Snapshot Isolation

Khuzaima Daudjee and Kenneth Salem
University of Waterloo

{kdaudjee,kmsalem}@db.uwaterloo.ca

ABSTRACT
Snapshot isolation is a popular transactional isolation level in
database systems. Several replication techniques based on snap-
shot isolation have recently been proposed. These proposals, how-
ever, do not fully leverage the local concurrency controls that pro-
vide snapshot isolation. Furthermore, guaranteeing snapshot isola-
tion in lazy replicated systems may result in transaction inversions,
which happen when transactions see stale data. Strong snapshot
isolation, which is provided in centralized database servers, avoids
transaction inversions but is expensive to provide in a lazy repli-
cated system. In this paper, we show how snapshot isolation can
be maintained in lazy replicated systems while taking full advan-
tage of the local concurrency controls. We propose strong session
snapshot isolation, a correctness criterion that prevents transaction
inversions. We show how strong session snapshot isolation can
be implemented efficiently in a lazy replicated database system.
Through performance studies, we quantify the cost of implement-
ing our techniques in lazy replicated systems.

1. INTRODUCTION
Database systems that use lazy replication to provide system scal-
ability have garnered the interest of commercial database vendors
and academic research groups alike [24, 7, 19, 16, 14, 2]. One-
copy serializability (1SR) has been the standard correctness crite-
rion for replicated data. However, there has been significant interest
in providing snapshot isolation (SI) [3], a transactional guarantee
weaker than 1SR. For example, Oracle provides snapshot isolation
as its strongest transactional guarantee [22].1 SI is also available in
Microsoft’s recent release of SQL Server 2005 [6].

The aim of providing transactional guarantees weaker than 1SR,
such as SI, is that the database system can achieve increased con-
currency by relaxing the isolation requirements on transactions.
Relaxed isolation requirements mean that concurrently executing
transactions may see each others’ effects indirectly through their ef-
fects on the database. In SQL, these effects are also called phenom-
ena [20] or anomalies [3]. In many systems, these anomalies may

1SI is called serializable isolation in Oracle.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

be acceptable if better system performance is desired. This is the
trade-off between transaction isolation and performance. Higher
degrees of transaction isolation guarantee fewer anomalies but with
larger performance penalties.

Snapshot isolation, proposed by Berenson et al [3], avoids many
of the anomalies that are avoided by 1SR. However, SI does not
guarantee serializability. SI extends the multiversion mixed method
[4] to allow update transactions to read old data. A key benefit
in systems that guarantee SI is that reads are never blocked. This
decoupling of reads from updates results in increased concurrency
and provides better system performance, particularly for read-only
transactions.

Under SI, two concurrent update transactions have a write-write
conflict if both transactions update at least one common data item.
For example, consider a transaction T1 that reads data items x and
y and then updates x, concurrently, with another transaction T2 that
reads data items x and y and then updates y. T1 and T2 do not have
a write-write conflict since neither transaction updates a common
data item.

Now consider the same two transactions in a lazily synchronized
replicated database system.2 Since T1 and T2 do not have a write-
write conflict under SI, their updates may be committed in the order
T1 followed by T2 at a site s1 but in the reverse order at another site
s2 in the replicated system in which each site individually guaran-
tees SI. In this case, a transaction Tr that reads x and y at site s1

and sees the database state resulting from the commit of T1 will
not see this same database state if it were to be executed on the
database replica at site s2. This replica inconsistency will not oc-
cur in a centralized database system that guarantees SI since any
transaction that reads the database state resulting from the commit
of T1 will always see the same state.

To preserve the behavior of a centralized SI system in guaranteeing
global SI in a distributed, lazily replicated, system, non-conflicting
update transactions can be executed sequentially in the same order
at all sites. Recall that the objective of the SI concurrency controls
is to increase the level of concurrency, and therefore performance,
by relaxing the isolation requirements on transactions [3]. Execut-
ing these transactions sequentially does not take advantage of the
relaxed isolation level of the local SI concurrency controls. Pro-
posals for maintaining global SI in replicated, distributed, systems
exist but utilize actions outside of the local concurrency controls
for enforcing an order on update transactions [8, 28, 24]. The first

2In a lazily synchronized system, replicas are updated using sepa-
rate transactions.

715



contribution of this paper is to show how global snapshot isolation,
or global SI, can be guaranteed in lazily synchronized replicated
database systems by taking full advantage of the local SI concur-
rency controls to order update transactions. Our approach captures
the schedule of transaction start and commit operations enforced
by the local concurrency control on update transactions at one site
and uses this schedule to install these updates at other sites in the
replicated system.

A key drawback of a lazily synchronized database system that guar-
antees global SI is that a client is not guaranteed to see its own
updates. As an example, consider a customer (client) who sub-
mits two transactions sequentially to an online bookstore. The
first transaction, Tbuy , is an update transaction that purchases some
number of books. The second transaction, Tcheck, is a read-only
transaction that checks the status of the purchase. When the cus-
tomer executes Tcheck, they may not see the status of their pur-
chase. That is, Tcheck may run against a copy that does not yet re-
flect the update made by Tbuy . This behavior, where the read-only
transaction (Tcheck) sees a database state that does not include the
effects of the update transaction (Tbuy) despite the fact that it fol-
lows the update transaction in the request stream, results in a trans-
action inversion. Transaction inversions are possible because SI
does not guarantee that a transaction will see a particular database
state. Potentially any database state that was installed by a transac-
tion that committed before Tcheck started, including one that was
installed by a transaction that committed before Tbuy, may be seen
by Tcheck in a system that guarantees SI.

Most centralized systems, in practice, do not allow transaction in-
versions to occur because these systems actually guarantee that
Tcheck will see the latest database state as of the time Tcheck was
run. In this paper, we formally define this transactional guaran-
tee, which we call strong SI. For example, Oracle and SQL Server
guarantee strong SI [22, 6]. Given the popularity of lazy replication
to scale-up a database server to support, for example, e-commerce
and OLAP-based applications, it is desirable to prevent transac-
tion inversions by guaranteeing strong SI not only in a centralized
database system but also in a distributed, replicated, system. How-
ever, consider what would be involved to provide this guarantee.
Using our previous example, Tcheck should not run until Tbuy’s up-
dates have been propagated and installed in the replicated system.
This requirement effectively nullifies the advantages of lazy repli-
cation since it is equivalent to eager replication, where one would
need to ensure that all replicas in the system are up-to-date before
Tcheck can run. This requirement would have serious performance
drawbacks on the lazy replicated system when scaled-up to a large
number of replicas.

In this paper, we show that in a lazy replicated system, guaranteeing
global strong SI is expensive, and that guaranteeing global SI is not
enough to prevent transaction inversions. The second contribution
of this paper is a new correctness criterion for replicated data called
strong session SI. Strong session SI prevents transaction inversions
within a client session but not across sessions. Thus, strong ses-
sion SI provides many of the benefits of strong SI but without the
performance penalties associated with guaranteeing strong SI.

We propose techniques that ensure global SI to transactions exe-
cuting in a lazy replicated database system while preventing trans-
action inversions. To this end, we proceed in two steps. We first
show how global SI can be guaranteed in a replicated system that
is synchronized lazily. Our techniques leverage the local concur-

rency controls in the replicated system that guarantee SI to order
update transactions. We then show how strong session SI can be
maintained on top of this system. Our performance studies show
that strong session SI can be provided at almost the cost of SI and
at a much lower cost than strong SI.

2. SNAPSHOT ISOLATION (SI) GUARAN-
TEES

In this section, we first present the operational definition of SI [3].
We then define strong SI and use it to derive our proposed transac-
tional guarantee of strong session SI.

2.1 SI and Strong SI
Snapshot isolation (SI) was proposed by Berenson et al [3]. Snap-
shot isolation, as defined in [3], does not allow dirty writes (phe-
nomenon P0), dirty reads (P1), fuzzy or non-repeatable reads (P2),
phantoms (P3), or lost updates (P4) (definitions of these phenom-
ena appear in the Appendix). However, write skew (P5) is possible
under SI, making SI weaker than serializability.

In the definition of SI [3], which informally discusses how SI can
be enforced, the system assigns a transaction T a start timestamp,
called start(T ), when the transaction starts. start(T ) determines
the database state seen by T . The system can choose start(T ) to
be any time less than or equal to the actual start time of T . Updates
made by any transaction T ′ that commits after time start(T ) will
not be visible to T . Updates made by any transaction T ′ that com-
mits before start(T ) will be visible to T . SI also requires that each
transaction T be able to see its own updates. Thus, if T updates a
database object and then reads that object, it will see the updated
version, even though the update occurred after start(T ).

When a transaction T is to commit, it is assigned a commit times-
tamp, commit(T ), where commit(T ) is more recent than any
start or commit timestamp assigned to any transaction. T com-
mits only if no other committed transaction T ′ with lifespan
[start(T ′), commit(T ′)] that overlaps with T ’s lifespan of
[start(T ), commit(T )] wrote data that T has also written. Other-
wise, T is aborted so as to prevent lost updates. This technique for
preventing lost updates is called the first-committer-wins (FCW)
rule. If T successfully commits, then any transaction T ′ that is
assigned start(T ′) > commit(T ) will see T ’s update.

SI does not prevent transaction inversions, i.e. SI does not guar-
antee that for every pair of transactions T1 and T2, if T2 executes
after T1 then T2 will see T1’s updates. This is because start(T2)
can be less than the actual start time of T2. In particular, it is pos-
sible to choose start(T2) < commit(T1) even if T2 starts after
T1 has finished. In this case, T2 will see a database state that does
not include the effects of T1. To prevent transaction inversions, we
need to guarantee a stronger property, which we call strong SI.

DEFINITION 2.1. Strong SI: A transaction execution history
H is strong SI iff it is SI, and if, for every pair of committed trans-
actions Ti and Tj in H such that Ti’s commit precedes the first
operation of Tj , start(Tj) > commit(Ti).

In a strong SI schedule, a transaction T2 that starts after a commit-
ted transaction T1 is guaranteed to see a committed database state
that includes the effects of T1. The operational definition of SI
specifies the assignment of commit timestamps to transactions such

716



that a transaction T ’s commit(T ) has to be larger than any exist-
ing start or commit timestamp issued by the system. Addition-
ally, strong SI constrains the assignment of start timestamps by
demanding that start(T2) be larger than commit(T1) if T1 com-
mits before T2 starts. Note that since the commit of each update
transaction moves the database state forward, commit timestamps
represent database state.

2.2 Terminology
To avoid confusion, we will use the term weak SI in this paper to
refer to the notion of SI described in Section 2.1 and originally de-
fined in [3]. Thus, weak SI allows a transaction to see any snapshot
earlier than its start timestamp. As in Definition 2.1, we will con-
tinue to use strong SI to mean the notion of SI in which a transaction
sees only the latest snapshot.

The term weak SI is equivalent to generalized snapshot isolation
used in [8] while strong SI is equivalent to the term conventional
snapshot isolation from [8] and to SI used elsewhere [32, 17, 6, 24,
28, 27, 9].

2.3 Strong Session SI
Strong SI may be too strong since it enforces transaction order-
ing and database state constraints between all pairs of transactions.
These requirements may be costly to enforce. Ordering constraints
may be necessary between some pairs of transactions but not be-
tween others. We use sessions as a means of specifying which
ordering constraints are important and which are not. The trans-
actions in an execution history H are partitioned into sessions. Or-
dering constraints can be enforced on transactions that belong to
the same session but not across sessions.

Since there can be many client sessions in a distributed system, we
use a session labeling [7] to assign transactions to sessions. If T

is a transaction in history H , we use the notation LH(T ) to refer
to T ’s session label. Given an execution history H and a labeling
LH , we define our session-level correctness criterion as follows:

DEFINITION 2.2. Strong Session SI: A transaction execution
history H is strong session SI under labeling LH iff it is weak SI,
and if, for every pair of committed transactions Ti and Tj in H

such that LH(Ti) = LH(Tj) and Ti’s commit precedes the first
operation of Tj , start(Tj) > commit(Ti).

If each transaction is assigned the same session label then strong
session SI is equivalent to strong SI since only one ordering mat-
ters. If a distinct label is assigned to every transaction, strong ses-
sion SI is equivalent to weak SI since no ordering guarantees mat-
ter.

2.4 Ordering Writes
We now discuss the ordering of update transactions under weak SI.
Two update transactions Ti and Tj are sequential if commit(Ti) <

start(Tj). In this case, Ti’s update will be installed before Tj’s
update. Two update transactions are concurrent if start(Ti) <

commit(Tj) and start(Tj) < commit(Ti). Let the sets of data
items that a transaction Ti reads and writes be called rsi and wsi,
respectively. If Ti and Tj are two concurrent update transactions,
both transactions cannot update and commit sucessfully if there is
a write conflict, i.e. wsi ∩ wsj 6= ∅. A way to resolve write con-
flicts is to use the first-committer-wins (FCW) rule [12] described

Update and Read-Only
Transactions

Primary Site

Secondary Sites

Lazy Update Propagation

Forwarded Update
Transactions

Clients

Figure 1: Lazy Master System Architecture

in Section 2.1. For concurrent transactions with conflicting writes,
the FCW rule ensures that only the updates of the first concurrent
transaction to commit are installed. For example, the Oracle com-
mercial database system applies the FCW rule to prevent lost up-
dates by keeping a history of recently committed transactions that
have updated each row of data on a per block basis [22].

For two concurrent update transactions Ti and Tj , it is possible
that their write sets are such that wsi ∩ wsj = ∅. In addition, if
rsi∩wsj 6= ∅ and rsj ∩wsi 6= ∅, then P5 (write skew) is possible.
In either case, Ti’s updates can be ordered before the updates of Tj

or vice versa under weak SI. We will consider the case of sequen-
tial and concurrent update transactions when we prove that updates
in our lazily synchronized system are installed in a consistent fash-
ion.

3. THE WEAK SI SYSTEM
In this section, we first describe a replicated database system with
lazy update propagation that provides global weak SI. In the next
section, we present an algorithm for enforcing strong session SI in
this system.

Figure 1 illustrates the architecture of the weak SI system. A pri-
mary site holds the primary copy of the database, and one or more
secondary sites hold secondary copies of the database. Each site
consists of an autonomous database management system with a lo-
cal concurrency controller that guarantees strong SI and is deadlock-
free, which is an assumption that is true of strong SI concurrency
controls in commercial systems.

We assume that the database is fully replicated at one or more sec-
ondary sites. Clients connect to one of the secondary sites and sub-
mit transactional requests. We assume that read-only transactions
are distinguished from update transactions in the request streams.
Read-only transactions are executed at the secondary site to which
they are submitted. Update transactions are forwarded by the sec-
ondaries to the primary and executed there.

We assume that when a transaction starts, the local concurrency
control assigns it a start(T ) timestamp in response to the trans-
action’s start operation. We assume that a logical log containing
update records is available. For example, Oracle provides the capa-
bility for such a log, which can hold SQL statements that are used
to apply updates to a copy of the database [23]. We assume that

717



each update transaction’s start timestamp is inserted into the log,
followed by the transaction’s update records, and then the transac-
tion’s commit record tagged with its commit timestamp or the abort
record. We also assume that the start and commit timestamps are
consistent with the actual order of start and commit operations at
the site. One approach for generating timestamps is described in
[18].

When a transaction T starts at the primary site, T sees the database
state there as of some time start(T ), which corresponds to a com-
mitted database state represented by a unique commit timestamp.
This means that when the updates of transaction T are installed us-
ing a separate refresh transaction R at a secondary site3, R needs
to see the database state seen by T at the primary site. If R does
not see the same database state as T , and if R’s writes depend on
the database state it reads before it writes, R may never install a
valid state on commit. In this case, the system would fail to guar-
antee global weak SI since the system may not be able to assign a
start timestamp to a transaction that would allow it to see the same
database state seen by T . Thus, to avoid this, if update transac-
tion T ′ saw the primary database state resulting from T ’s commit
(given by commit(T )) then T ′’s refresh transaction R′ also needs
to see this same state resulting from the commit of R at a secondary
site. This means that the order in which refresh transactions exe-
cute, including the database states seen by each of the transactions,
has to match that of their corresponding update transactions at the
primary.

3.1 Synchronization Overview
We will use the notation startp(T ) or commitp(T ) to mean the
start or commit timestamp, respectively, issued by the primary site
to transaction T . When referring to the start or commit timestamps
of transactions at a secondary, we shall use the subscript s instead
of p with this timestamp notation. For example, commits(R)
means the commit timestamp issued to refresh transaction R’s com-
mit at a secondary site s. To ensure that update transactions and
their corresponding refresh transactions start and commit in the
same order at each site, the following relationships have to hold:
1. startp(T2) > commitp(T1)⇒ starts(R2) > commits(R1)

2. commitp(T2) > startp(T1)⇒ commits(R2) > starts(R1)

3. commitp(T2) > commitp(T1)⇒ commits(R2) > commits(R1)

The database state seen and committed by update transactions at
the primary correspond to the transactions’ start and commit times-
tamps, respectively. The sorted order of these timestamps repre-
sents the sequence of database states seen and committed by trans-
actions at the primary site. Thus, the system needs to ensure that
the start and commit of all refresh transactions follow the sorted or-
der of start and commit timestamps at the primary. To achieve this,
transactions’ start and commit records (with updates) are propa-
gated in the order of their timestamps to secondary sites. At each
secondary site, we ensure that refresh transactions’ start and com-
mit operations follow this propagation order. Next, we describe the
propagation and refresh mechanisms.

3.2 Update Propagation
A simple method for propagating updates to secondary sites is to
propagate start operations, updates and commit operations in pri-
mary timestamp order. These operations can then be executed in

3Recall from Section 1 that database replicas are updated using
separate transactions, which we call refresh transactions.

propagation order at each secondary site to ensure that relation-
ships 1, 2 and 3 hold. As the workload scales-up, the potential
for aborts increases with the number of update transactions. The
drawback of the simple approach is that execution and the abort of
updates would result in wasted work while consuming significant
processing capacity at the secondary sites. Thus, it is important to
avoid propagating and applying updates of transactions that would
eventually have to be aborted.

Our approach for update propagation is summarized in Algorithm
3.1. Committed updates from the primary site’s log are kept in an
update list. Updates from this list are broadcast to all secondary
sites where they are placed into a FIFO update queue. Propagation
follows the order of start and commit timestamps and we assume
that propagated messages are not lost or reordered during propaga-
tion. T ’s commit record, which consists of T ’s updates and its com-
mit timestamp, is propagated only after T commits. This avoids
propagation and execution of updates that may have to be aborted
at the secondary sites. It is possible that updates of a committed
transaction T are ready to be propagated but that there is a transac-
tion T ′ with startp(T

′) < commitp(T ) that has yet to commit.
If T ’s updates are not propagated until after T ′ commits, this can
affect the progress of update propagation. To ensure propagation
liveness, start records are propagated when they are encountered
in the primary site’s log. Moreover, since updates are propagated in
commit order, it is ensured that there is no committed but unpropa-
gated transaction T ′ with commitp(T

′) < commitp(T ).

Algorithm 3.1 Primary Update Propagation

1 for each entry at the head of the log
2 do
3 if entry is startp(T )
4 then propagate startp(T )
5 if entry is T ’s update
6 then insert it in update list for T

7 if entry is commitp(T )
8 then propagate T ’s update list with commitp(T )
9 if entry is abortp(T )

10 then propagate abortp(T )

3.3 Secondary Refresh
We need to ensure that relationships 1, 2 and 3 are maintained
when performing secondary refresh. A straightforward method of
achieving this at the secondary sites is to apply the start, update and
commit operations in primary log sequence. However, it would be
advantageous to exploit the potential of the concurrency control
to apply updates concurrently while maintaining relationships 1, 2
and 3. Our technique for secondary refresh utilizes this approach.

A refresh process, or refresher, runs at each secondary site. The
refresh process dequeues updates from the local update queue and
applies them to the database copy using refresh transactions. For
each propagated update transaction, the refresher forks an applica-
tor thread that applies the transaction’s updates as a separate refresh
transaction to the local database.

Pseudocode for a single iteration of the refresher is shown in Algo-
rithm 3.2. The refresher communicates with the applicator threads
through a FIFO queue called the pending queue. Pseudocode for a

718



Algorithm 3.2 Secondary Refresh Algorithm

1 if head(updateQueue) = startp(T )
2 then while (pendingQueue is not empty)
3 do {} /* block */
4 start refresh(T )

/* start new local transaction to apply T ’s updates */
5 elseif head(updateQueue) is T ’s commit record
6 then append(commitp(T ), pendingQueue)
7 fork(RunTransaction(T ’s updates, refresh(T )))

/* runs T ’s updates within refresh(T ) */
/* as described in Algorithm 3.3 */

8 elseif head(updateQueue) = abortp(T )
9 then abort refresh(T )

10 delete (head(updateQueue)) /* delete processed entry */

single iteration of an applicator thread is shown in Algorithm 3.3.
When the refresher dequeues the start record for transaction T from
the update queue, it blocks until the pending queue is empty before
it starts T ’s local refresh transaction R. The blocking of T ’s start
record ensures that T sees a database state that includes the updates
of the transaction that committed before it. Algorithm 3.2 also en-
sures that all updates of a transaction T are applied within a single
refresh transaction R. A single applicator thread is used to apply
all updates of T (using Algorithm 3.3), and multiple, concurrent,
applicator threads may be active at any one time.

In practice, instead of creating a new thread each time as shown
in Algorithm 3.2, a fixed-size pool of applicator threads could be
made available at each secondary. Algorithm 3.2 shows a thread
creation (fork) for each transaction just to keep the code simple.

Algorithm 3.3 Applicator Thread

RunTransaction(updateList,R)

1 for each update in updateList

2 do execute update within refresh transaction R

3 while (head(pendingQueue) is not commitp(T ))
4 do {} /* block */
5 commit(R)
6 delete(commitp(T ), pendingQueue)

3.4 Concurrency and Failure
The refresh mechanism described in the previous section enqueues
and dequeues records to and from the update queue and the pending
queue. Since both enqueue and dequeue include a write operation,
a potential problem is that concurrent transactions operating on the
queues may have a write-write conflict if they update data items
on the same page (or block) of the queue [9]. Under the FCW
rule, only one of the concurrent transactions would be allowed to
complete successfully while the rest would be aborted. This can
undermine the progress of the refresh mechanism and can reduce it
to a sequential process. To avoid aborts, propagated records can be
stored in a queue outside of the database.

Keeping propagated records in a queue outside a secondary database
introduces a potential point of failure. If a secondary site fails, the
queued updates and the refresh state would be lost. For two refresh

transactions R1 and R2 that are concurrent, R1 may have seen a
database state installed before R2’s commit. If R2 committed at
the secondary before the failure, R1 will not see a database state
that precludes R2’s commit if it is restarted. A solution to this
problem is to periodically create a copy of the primary database af-
ter quiescing it. In the case of failure of a secondary site, this copy
can be installed at the secondary and any updates that have com-
mitted at the primary between the quiesced state and installation of
the database copy can be propagated and installed at the secondary
using the refresh mechanism described in the previous section.

3.5 Correctness
We will now establish that relationships 1, 2 and 3 (from Section
3.1) hold for the weak SI system we have described.

LEMMA 3.1. For any primary transactions T1 and T2 and cor-
responding refresh transactions R1 and R2, respectively,
startp(T1) < commitp(T2) ⇒ starts(R1) < commits(R2).

Proof: Since startp(T1) < commitp(T2), the propagator will
send T1’s start record before T2’s commit record and they will be
received in this order in the local update queue. The refresher will
dequeue T1’s start record and start T1’s refresh transaction R1 be-
fore it applies T2’s updates using refresh transaction R2 and sub-
mits commits(T2). This means that starts(R1) < commits(R2).
2

LEMMA 3.2. For any primary transactions T1 and T2 and cor-
responding refresh transactions R1 and R2, respectively,
commitp(T1) < startp(T2) ⇒ commits(R1) < starts(R2).

Proof: Because update propagation is in timestamped order, T1’s
commit record will be at the head of the update queue before T2’s
start record. This means that the refresh thread will have appended
T1’s commit record to the pending queue before it processes T2’s
start record. Since the refresher will not process T2’s start record
until the pending queue is empty, and since the applicator thread
for T1’s refresh transaction R1 does not remove T1’s commit record
from the pending queue until it has commited R1, the refresher will
not start T2’s refresh transaction R2 until after T1’s refresh transac-
tion R1 commits. This means that commits(R1) < starts(R2).
2

LEMMA 3.3. For any primary transactions T1 and T2 and cor-
responding refresh transactions R1 and R2, respectively,
commitp(T1) < commitp(T2) ⇒ commits(R1)
< commits(R2).

Proof: Because update propagation is in timestamped order, T1’s
commit record will be at the head of the update queue before T2’s
commit record. This means that the refresher will
insert commitp(T1) in the pending queue before inserting
commitp(T2) in the pending queue. Since commitp(T1) will
precede commitp(T2) in the pending queue, and since the ap-
plicator thread will not commit T2’s refresh transaction R2 until
commitp(T2) is at the head of the pending queue, the commit of
T1’s refresh transaction R1 will precede R2’s commit and thus,
commits(R1) < commits(R2). 2

719



Let Si
p represent the ith database state at the primary site. This

is the database state that is created by the ith update transaction
to commit at the primary. Similarly, for any particular secondary
site, let Si

s represent the ith database state at that site. This is the
database state created by the ith refresh transaction at the secondary
site. The update propagation and secondary refresh mechanisms of
the weak SI system ensure that the secondary’s database state tracks
the state of the primary, although it may lag behind. This property,
which was called completeness by Zhuge, Garcia-Molina et al [33,
34], is established for the weak SI system by Theorem 3.1.

THEOREM 3.1. For every secondary site, if S0
p = S0

s then Si
p =

Si
s, for all i ≥ 0.

Proof: By induction on i. The base case (i = 0) is established by
assumption. Suppose that the Theorem is true for all i < k. Let
Tk represent the kth update transaction to commit at the primary
site. Tk produces the state Sk

p at the primary. From Lemma 3.3,
refresh transactions commit at each secondary site in the same or-
der as the corresponding update transactions at the primary. Thus,
Rk , the refresh transaction corresponding to Tk, will be the kth re-
fresh transaction to commit at the secondary site, producing state
Sk

s . Let Tj represent the last update transaction to commit at the
primary site prior to startp(Tk), i.e., commitp(Tj) < startp(Tk)
< commitp(Tj+1). Since the primary site guarantees strong SI lo-
cally, Tk sees the database state Sj

p, the state produced by Tj . From
Lemmas 3.1 and 3.2, commits(Rj) < starts(Rk) <

commits(Rj+1), and from Lemma 3.3, there are no other refresh
transactions that commit between Rj and Rj+1. Since the sec-
ondary site guarantees strong SI locally, refresh transaction Rk

sees the state Sj
s produced by Rj . By the inductive hypothesis,

Sj
s = Sj

p, so Rk sees the same database state that Tk did at the
primary site. Since Rk consists of the same updates as Tk and it
applies those updates to the same state that Tk did, it will produce
the same state at the secondary that Tk did at the primary, provided
that it commits. Since the local concurrency control is deadlock-
free, Rk will commit, resulting in Sk

s = Sk
p . 2

THEOREM 3.2. The weak SI system guarantees global weak SI.

Proof: All update transactions are executed at the primary site,
which guarantees strong SI locally. (Strong SI implies weak SI.)
Consider an arbitrary read-only transaction Tr , which is executed
at some secondary site. Let Ri represent the refresh transaction
that commits immediately prior to starts(Tr), and let Ti represent
the corresponding update transaction at the primary site. Since the
local concurrency control at the secondary site guarantees strong
SI, Tr sees the database snapshot Si

s that is produced by Ri. From
Theorem 3.1, Si

s is the same as Si
p, the primary database state pro-

duced by Ti. Thus, running Tr at the secondary is equivalent to
running it in the strong SI schedule at the primary site immediately
after Ti commits. A similar argument can be made for every read-
only transaction running at any secondary site. Thus, the global
transaction schedule is weak SI. 2

Note that, although each local system guarantees strong SI locally,
the global guarantee is weak SI, not strong SI. Theorem 3.2 shows
that each read-only transaction sees a transaction-consistent snap-
shot. However, the snapshot that a read-only transaction sees at a
secondary site may be stale with respect to the current state at the

primary. As a result, transaction inversions may occur. In particu-
lar, a read-only transaction that follows an update transaction may
see a database state that does not yet include the update transac-
tion’s effects.

4. ENFORCING GLOBAL STRONG SESSION
SI

A client’s sequence of transactional requests constitute a session.
We assume that each transaction has associated with it, either ex-
plicitly or implicitly, a session label so that the secondary site can
tell which transactions belong to which session. In a web services
environment, the customer sessions may be tracked by the applica-
tion server or web server using cookies or a similar mechanism. In
this case, the upper tiers can create session labels and pass them to
the database system to inform it of the session labels.

We propose ALG-STRONG-SESSION-SI, which is used to enforce
global strong session SI. ALG-STRONG-SESSION-SI uses times-
tamps that correspond to the commit order of transactions at the
primary database. These timestamps are used to control the order
in which read-only transactions are executed.

The ALG-STRONG-SESSION-SI algorithm maintains a session se-
quence number seq(c) for each session c. When an update trans-
action T from session c commits, seq(c) is set to commitp(T ). A
sequence number seq(DBsec), maintained by refresh transactions,
is used to represent the state of the secondary database in terms of
the primary database. When update transaction T ’s refresh transac-
tion R commits at the secondary site, the applicator thread sets the
value of seq(DBsec) to commitp(T ). When a read-only trans-
action Tr starts, Tr will wait if seq(c) > seq(DBsec). Otherwise,
since each site guarantees strong SI, Tr will see a database state that
is at least as recent as the database state seen by the last transaction
from the same session. The refresher uses exactly the same code
as that shown in Algorithm 3.2. The applicator threads also use
the same code as shown in Algorithm 3.3 with the additional step
of setting seq(DBsec) to commitp(T ) immediately after refresh
transaction R commits at the secondary site and before deleting
commitp(T ) from the pending queue.

In case of failure at a secondary, a dummy transaction Td can be
executed at the primary site after recovery to obtain the sequence
number associated with the primary’s latest committed database
state. seq(DBsec) can then be reinitialized to the sequence number
associated with Td.

THEOREM 4.1. If each site guarantees strong SI locally, then
the ALG-STRONG-SESSION-SI algorithm in conjunction with the
propagation and refresh mechanisms of the weak SI system guar-
antees global strong session SI.

Proof: Suppose that the claim is false, which means that there ex-
ists a pair of transactions T1 and T2 in the same session c for which
T1 is executed before T2 but start(T2) < commit(T1), i.e. T2

“sees” a database state that does not include the effects of T1. There
are four cases to consider:
Case 1: Suppose T1 and T2 are update transactions. T1 and T2 both
execute at the primary site. Since the primary site ensures strong SI
and since T2 starts after T1 finishes, startp(T2) > commitp(T1),
a contradiction.
Case 2: Suppose T1 is a read-only transaction and T2 is an up-
date transaction. Since T1 precedes T2 and T2 precedes its refresh

720



transaction R2, T1 precedes R2 at the secondary site. Since the sec-
ondary site ensures strong SI, starts(R2) > commits(T1). Since
the system provides completness (Theorem 3.1) and global weak
SI (Theorem 3.2), starts(R2) > commits(T1) is equivalent to
startp(T2) > commitp(T1), a contradiction.
Case 3: Suppose T1 is an update transaction and T2 is a read-only
transaction. After T1 commits, seq(c) is set to commitp(T1). The
blocking condition ensures that no subsequent read-only transac-
tion in session c can run until seq(DBsec) is at least as large as
commitp(T1). Thus, T2 runs after seq(DBsec) is set to
commitp(T1), which happens after the commit of T1’s refresh
R1. Since the secondary site ensures strong SI, starts(T2) >

commits(R1). Since the system provides completness (Theorem
3.1) and global weak SI (Theorem 3.2), starts(T2) > commits(R1)
is equivalent to startp(T2) > commitp(T1), a contradiction.
Case 4: Suppose both T1 and T2 are read-only transactions. Both
transactions run at the secondary site. Since strong SI is guaran-
teed locally there and T2 starts after T1 commits, starts(T2) >

commits(T1), a contradiction.2

5. SIMULATION MODEL
We have developed a simulation model of the weak SI system de-
scribed in Section 3. The simulator has been used to study the cost
of providing the strong session SI guarantee described in Section
4, and for comparing it to the cost of maintaining the strong SI and
weak SI guarantees. The simulation model is implemented in C++
using the CSIM simulation package [21].

Each site (or server) is modelled as a CSIM resource. Client pro-
cesses simulate the execution of transactions in the system. Each
client process is associated with a single secondary site, and sub-
mits all its transactions to that site. Client processes are distributed
uniformly over the secondary sites in the system. Other processes
in the system are the (update) propagator and refresher. A summary
of the simulation model’s parameters appears in Table 1.

Each client process initiates a series of sessions, each of which con-
sists of a sequential stream of transactions. Session lengths are ex-
ponentially distributed with a mean session length of session time.
Each client process thinks between transactions, where the think
times follow an exponential distribution with a mean think time
of think time. The total number of sessions in the system at any
one time is num clients. When a client session ends, a new one is
started immediately. Our session time and think time mean values
are taken from the TPC-W benchmark [31].

A transaction is an update transaction with probability
update tran prob, and a read-only transaction with probability (1 –
update tran prob). The default mix of read-only/update transac-
tions that we use for our workload is 80%/20%. We also ran some
experiments with the 95%/5% mix. The 80%/20% mix follows the
“shopping” mix in the TPC-W specification while the 95%/5% mix
is the “browsing” mix. The TPC-W benchmark specifies web inter-
actions rather than transactions. If each web interaction is a trans-
action, which the benchmark allows, then the read-only to update
mixes are of the same proportions as in our workload mix.

Each transaction is directed to a secondary site or to the primary
site for execution. All update transactions execute at the primary
site while read-only transactions execute at secondary sites. Each
read-only transaction is subjected to its execution site’s local con-
currency control while each update transaction is subjected to pri-
mary site’s concurrency control.

Parameter Description Default
num sec number of secondary

sites
varies

num clients number of clients 20/secondary
think time mean client think time 7s

session time mean session duration 15 min.
update tran prob probability of an update

transaction
20%

abort prob update transaction abort
probability

1%

tran size mean number of opera-
tions per transaction

10

op service time service time per opera-
tion

0.02s

update op prob probability of an update
operation

30%

propagation delay propagator think time 10s

Table 1: Simulation Model Parameters

We use a simple model of a concurrency controller at the primary
site that implements local strong SI and the first-committer-wins
rule. When an update transaction is ready to commit, it has prob-
ability abort prob of aborting. We set the value of abort prob to
1%. On abort, the transaction is restarted so as to maintain the load
at the primary. Note that the aim of our simulator is to quantify the
cost of providing strong session SI and to measure system scalabil-
ity. Thus, we are not concerned with simulating a detailed model
for transaction aborts. As described in Sections 3.3 and 3.5, start,
update and commit operations at the primary are applied at each
secondary site while maintaining relationships 1, 2 and 3. Thus,
explicit local concurrency controls are not modeled at secondary
sites. Read-only transactions are never blocked at the secondary
sites since we assume that they access committed snapshots of data
and do not contend with refresh transactions.

The number of operations in a transaction is randomly chosen from
5 to 15, with a mean of tran size operations. If the transaction is
an update transaction, each of its operations is an update operation
with probability update op prob, otherwise it is a read operation.
All transactions running at a site access the server at that site. The
server is a shared resource with a round-robin queueing scheme
having a time slice of 0.001 seconds.

The propagator at the primary site executes the propagation mech-
anism described in Section 3.2. During each cycle, the propagation
process sends all start and commit records to all secondaries that
have accumulated since the last propagation cycle. Since we as-
sume that the propagator is implemented as a log sniffer, it does
not use the local concurrency control. A resource to represent the
network is not used in the simulator. We assume that the network
has sufficient capacity so that network contention is not a signifi-
cant contributor to the propagation delay. We use a 10s propagation
delay to account for delays that may result from network latencies,
batching and scheduling at primary sites.

There is one refresher process and multiple applicator threads at
each secondary site. The refresher dequeues messages containing
start and commit information from the local update queue and pro-
cesses them according to the algorithm described in Section 3.3.
The refresher communicates with the applicator threads by sending
messages containing the updates that need to be installed. Com-

721



mit timestamp messages are inserted into the FIFO pending queue
by the refresher. A notification process monitors the state of the
pending queue and notifies the refresher when the pending queue is
empty. This process also notifies the applicator thread that installs
refresh transaction R of update transaction T when commitp(T )
is at the head of the pending queue. This notification allows the
applicator thread to commit refresh transaction R of update trans-
action T . The thread then sets seq(DBsec) to commitp(T ) after
which it dequeues commitp(T ) from the pending queue.

6. PERFORMANCE ANALYSIS
We conducted experiments using our simulation model to study the
efficacy of the ALG-STRONG-SESSION-SI algorithm with respect
to transaction throughput and response time. We also wanted to
compare the cost of providing strong session SI against that of pro-
viding global strong SI and global weak SI. To make this com-
parison, we implemented two more algorithms against which we
compare ALG-STRONG-SESSION-SI:
ALG-WEAK-SI: provides global weak snapshot isolation by sim-
ply forwarding all update transactions to the primary for execution
while executing read-only transactions at the secondary site. ALG-
WEAK-SI, itself, never blocks transactions. Transactions are sub-
jected to the local concurrency control of the site at which they
execute. Under ALG-WEAK-SI, the functionality of the system is
equivalent to that of the weak SI system described in Section 3.
ALG-STRONG-SI: this algorithm is the same as the ALG-STRONG-
SESSION-SI algorithm described in Section 4, except that instead
of having one session per client, there is a single session for the
system. Only a single session sequence number seq(c) is main-
tained for the whole system. Since having a single seq(c) implies
that only a single global ordering of transactions is enforced, we ex-
pect that ALG-STRONG-SI will perform worse than ALG-WEAK-
SI and ALG-STRONG-SESSION-SI.

6.1 Methodology
For each run, the simulation parameters were set to the values shown
in Table 1, except as indicated in the descriptions of the individual
experiments. Each run lasted for 35 simulated minutes. We ig-
nored the first five minutes of each run to allow the system to warm
up, and measured transaction throughput, response times and other
statistics over the remainder of the run. Since we truncate the sim-
ulation at the end of 35 minutes, a cool down phase is not required.
Each reported measurement is an average over five independent
runs. We computed 95% confidence intervals around these means.
These are shown as error bars in the graphs.

6.2 Performance Results
We subjected our configuration of five secondary sites to load from
an increasing number of clients. The results of these experiments
are shown as throughput, read-only and update transaction response
time curves in Figures 2, 3 and 4. To show how many transactions
finish within a short time in the system, the throughput curves are
response time-related; they show the number of transactions that
finish in 3s or less.

The throughput and response time curves (Figures 2 and 3 respec-
tively) show that the ALG-STRONG-SESSION-SI algorithm per-
forms almost as well as ALG-WEAK-SI, and significantly better
than ALG-STRONG-SI. The throughput of the
ALG-STRONG-SESSION-SI algorithm is almost identical to that
of ALG-WEAK-SI at low load. Under moderate to heavy load, the
difference in throughput increases and ALG-STRONG-SESSION-SI

0

5

10

15

20

25

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

tp
s)

Number of Clients

Alg-Strong-Session-SI
Alg-Weak-SI

Alg-Strong-SI

Figure 2: Transaction Throughput vs. Number of Clients,
80/20 workload

0

2

4

6

8

10

12

0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

(s
)

Number of Clients

Alg-Strong-Session-SI
Alg-Weak-SI

Alg-Strong-SI

Figure 3: Read-Only Transaction Response Time vs. Number
of Clients, 80/20 workload

incurs a small penalty compared to ALG-WEAK-SI. Under ALG-
WEAK-SI, since no session constraints are enforced, transactions
are free to run as soon as they are submitted for execution. Since
session constraints are enforced under ALG-STRONG-SESSION-
SI, some transactions within a session are forced to wait before they
are serviced, resulting in a small response time penalty (Fig. 3).
The performance of ALG-STRONG-SI suffers significantly com-
pared to ALG-STRONG-SESSION-SI since enforcing a total order
on transactions is expensive, as shown by Figures 2 and 3. Figure 4
shows small update response times for ALG-STRONG-SI because
it forces transactions to wait a long time while enforcing a total or-
der (single session) constraint. This results in a low offered update
load, leading to low update response times. Unlike ALG-STRONG-
SI, ALG-STRONG-SI and ALG-STRONG-SESSION-SI are not sub-
jected to a total order constraint and are able to offer a higher update
load, leading to higher update response times.

6.2.1 Scalability
To test system scalability, we ran experiments where the number
of secondary sites were scaled with the client load. We measured
(response time-related) throughput and response time as both the
number of secondary sites and clients were increased gradually.
Figures 5, 6 and 7 show the results of this experiment.

722



0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

(s
)

Number of Clients

Alg-Strong-Session-SI
Alg-Weak-SI

Alg-Strong-SI

Figure 4: Update Transaction Response Time vs. Number of
Clients, 80/20 workload

The ALG-STRONG-SESSION-SI algorithm again showed scale-up
behaviour comparable to that of ALG-WEAK-SI. ALG-STRONG-
SI, on the other hand, performed poorly compared to the other two
algorithms. In the case of ALG-STRONG-SESSION-SI and ALG-
WEAK-SI, as the workload scales-up, the primary site becomes
saturated with an increasing update load and the update response
time then increases rapidly (Fig. 7). Past 11 secondary sites, sys-
tem throughput peaks as the saturated primary site limits system
scalability.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

y=x
Alg-Strong-Session-SI

Alg-Weak-SI
Alg-Strong-SI

Figure 5: Transaction Throughput, 20 Clients per Secondary,
80/20 workload

The scalability results are sensitive to the mix of read-only and up-
date transactions in the workload. As the results of Figure 8 show,
significantly greater scalability is achieved with the 95/5 workload.

7. RELATED WORK
One-copy serializability (1SR) has been the standard correctness
criterion for replicated data [4, 14, 2, 1, 5]. Recently, there has
been growing interest in providing timetravel functionality (in the
context of weak SI) [18, 25], and strong SI [15, 24, 8]. There have
been several other proposals for relaxing the one-copy serializabil-
ity (1SR) requirement for replicated data [11, 26, 10]. However,
these proposals do not consider an isolation level such as strong
snapshot isolation that is available in commercial database systems.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

R
es

po
ns

e 
T

im
e 

(s
)

Number of Secondary Sites

Alg-Strong-Session-SI
Alg-Weak-SI

Alg-Strong-SI

Figure 6: Read-Only Transaction Response Time, 20 Clients
per Secondary, 80/20 workload

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

R
es

po
ns

e 
T

im
e 

(s
)

Number of Secondary Sites

Alg-Strong-Session-SI
Alg-Weak-SI

Alg-Strong-SI

Figure 7: Update Transaction Response Time, 20 Clients per
Secondary, 80/20 workload

Kemme and Alonso [15] proposed an eager replication protocol
that is equivalent to strong SI. Their approach relies on group com-
munication systems available for local area network clusters to de-
termine a global serialization order for transactions. Wu and Kemme
presented an eager replication scheme equivalent to strong SI that
is integrated into a database system [32]. The writeset of an update
transaction that is submitted for execution locally is multicast to
all remote sites using group communication before the transaction
commits. To ensure that concurrent update transactions do not exe-
cute in different orders at different sites, their approach imposes the
restriction that writesets at all sites have to be executed serially in
the same order. In contrast to these eager approaches, we focus on
using lazy replication to provide global weak SI by exploiting the
ordering of update transactions by the local concurrency controls at
the primary site and show how session guarantees can be provided
to prevent transaction inversions.

Lin et al [17] presented a middleware-based eager
replication scheme that is equivalent to the provision of global strong
SI. An update transaction executes at a single site, and its writes are
applied at other replicas before it commits. This requires that the
writeset be extracted from the local database system before com-
mit. Their approach uses group communication to broadcast an up-
date transaction’s writeset to all replicated sites. The middleware

723



0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55

T
hr

ou
gh

pu
t (

tp
s)

Number of Secondary Sites

y=x
Alg-Strong-Session-SI

Alg-Weak-SI
Alg-Strong-SI

Figure 8: Transaction Throughput, 20 Clients per Secondary,
95/5 workload

determines write-write conflicts between transactions. However,
the middleware may not be aware of a write conflict between a re-
mote transaction and a transaction that is local until at commit time.
Since this can result in deadlock, they propose to resolve it by al-
lowing non-conflicting transactions whose writesets do not overlap
to be installed in an order that is different from that enforced by the
middleware. In the terminology of Zhuge et al [33, 34], their sys-
tem does not provide completeness. In our work, we propose def-
initions of strong session SI and strong SI. We show that in a lazy
system, maintaining global strong SI is expensive and maintaining
global weak SI, while being less costly, does not provide any or-
dering guarantees. To this end, we propose global strong session SI
and we show how to maintain it on top of global weak SI in repli-
cated systems. We treat the snapshot replicas at secondary sites as
views of the base data at the primary. We maintain the snapshot
relations through lazy update propagation. We ensure that refresh
transactions at every secondary site start and commit in the same
order as their corresponding update transactions at the primary site.
This provides completeness [33, 34] in the system.

Plattner and Alonso have recently proposed techniques for scaling-
up a database system while guaranteeing equivalence to global
strong SI [24]. Their single primary site architecture is similar to
that described in this paper. All update transactions execute at the
primary and read-only transactions execute at the secondary sites.
The middleware allows use of the local concurrency control at the
primary site at which update transactions execute but the middle-
ware controls the order in which update transactions commit. Up-
dates committed at the primary are propagated and installed at the
secondary sites in commit order. Read-only transactions see the
latest database state on execution. There is no notion of session-
level transactional guarantees in their work and they do not exploit
the relationship between transaction ordering and execution that we
have exploited.

Elnikety et al [8] considered the provision of transactional guar-
antees weaker than 1SR in replicated databases. Their work pro-
poses prefix-consistent SI (PCSI), which allows transactions in a
workflow (a concept similar to our proposed notion of a session)
to see a database state that includes the effects of previous update
transactions within the workflow. Unlike strong session SI, PCSI
does not enforce any ordering constraints between read-only trans-
actions within the same workflow. For example, if a workflow con-

tains two read-only transactions T1 and T2, where T1 is followed
by T2, strong session SI requires that T2’s snapshot be at least as
recent as T1’s snapshot. However, PCSI has no such requirement
according to the PCSI rules in [8]. The techniques proposed in [8]
allow update transactions to execute at any site provided that they
synchronize with a master site, which orders the update transac-
tions, using a distributed commit protocol. A second model uses
a decentralized approach in which update transactions rely on an
atomic broadcast protocol to enforce a total order on all updates. In
our work, update transactions execute at the primary site. We uti-
lize the primary’s strong SI local concurrency controls to order all
update transactions. Our approach captures the schedule of trans-
action start and commit operations enforced by the primary’s local
concurrency control on update transactions and uses this schedule
to install these updates lazily at other sites in the replicated system.

Schenkel et al [28] propose algorithms for guaranteeing
global strong SI in federated database systems where each site guar-
antees strong SI locally. When a transaction accesses data at dif-
ferent sites, to guarantee global strong SI the transaction has to see
data at the same timepoint, i.e. the same database state at each
site. A global transaction T2 may execute concurrently with an-
other transaction T1 at one site but serially at another site. This
may violate strong SI, since it is possible that one transaction may
read a database state that is different from the other site. To en-
sure global strong SI, they describe an approach to control the ex-
ecution order of transactions at each site to enforce a total global
order. This approach requires the prediction of data that each trans-
action needs to access. They also consider an optimistic approach
whereby transactions are run but aborted later if they violate global
strong SI. This requires the determination of whether transactions
execute serially or concurrently and restricts the set of allowable
schedules under global strong SI.

Fekete et al [9] develop principles under which non-serializable ex-
ecution of transactions can be avoided to guarantee serializability
when the database system guarantees strong SI. They suggest mod-
ifying the workload statically, for example, by introducing con-
flicts between transactions such that they would effectively be se-
rialized under the first-committer-wins rule. Schenkel et al [27]
consider how 1SR can be guaranteed to transactions that execute
on a database system that guarantees strong SI. They force update
transactions to execute serially, and use tickets to represent their
serialization order. The execution order of read-only transactions
can then be controlled using these tickets. Optionally, they propose
a technique that requires analysis of transaction conflicts and ap-
plication semantics. These approaches are in contrast to our work,
which considers the provision of session-level SI guarantees and
not 1SR in lazy replicated systems.

Bayou [30, 29] is a fully replicated system that provides data fresh-
ness to user sessions through causal ordering constraints on read
and write operations. Writes that are submitted for execution in
Bayou must contain information about how to resolve conflicts
with other writes. This information is specified in the form of a
merge procedure, which is responsible for resolving conflicts de-
tected during the application of a write. Each update is serviced by
a single primary site, which assigns the update with a timestamp.
Updates and their associated timestamps are propagated lazily be-
tween sites. A site is not guaranteed to know the total order of up-
dates at any one time. Thus, Bayou guarantees only eventual con-
sistency, which means that servers converge to the same database
state only in the absence of updates. For replicated data, this is the

724



same weak notion of consistency as convergence [33, 34]. Bayou
does not necessarily guarantee that constraints within a session are
preserved. It is possible for the system to report that a requested
session guarantee, e.g. read-your-writes, cannot be provided. Some
recent work allows queries to see data up-to-date to different time-
points [13] but this work does not consider data freshness in the
context of transactional isolation levels. [7] shows how ordering
guarantees under serializability can be provided in lazy replicated
systems. However, these techniques are not generally applicable to
provide the snapshot isolation transactional guarantees considered
in this paper.

8. CONCLUSION
In this paper, we described an architecture and algorithms that take
advantage of the local concurrency controls to maintain global weak
SI in lazy replicated systems. We defined a new session-oriented
correctness criterion called strong session SI and we showed how
it can be implemented efficiently to prevent transaction inversions
in systems where each local concurrency control guarantees strong
snapshot isolation. We showed that our proposed correctness crite-
rion of strong session SI can perform almost as well as algorithms
that maintain global weak SI, but without the high cost of providing
strong SI. We conclude that our techniques for guaranteeing global
weak SI and for avoiding transaction inversions through strong ses-
sion SI in lazy replicated database systems are promising.

9. REFERENCES
[1] Divyakant Agrawal, Amr El Abbadi, and R. Steinke.

Epidemic algorithms in replicated databases. In Symposium
on Principles of Database Systems, pages 161–172, 1997.

[2] F. Akal, C. Türker, H.-J. Schek, Y. Breitbart, T. Grabs, and
Lourens Veen. Fine-grained lazy replication with strict
freshness and correctness guarantees. In Proc. International
Conference on Very Large Data Bases (VLDB), pages
565–576, 2005.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton,
Elizabeth J. O’Neil, and Patrick E. O’Neil. A critique of
ANSI SQL isolation levels. In Proc. ACM SIGMOD
International Conference on Management of Data, pages
1–10, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[5] Yuri Breitbart and Henry F. Korth. Replication and
consistency: Being lazy helps sometimes. In Proc. ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 173–184, 1997.

[6] Microsoft Corp. SQL Server 2005 Beta 2 Snapshot Isolation.
www.microsoft.com/technet/prodtechnol/sql/2005/
SQL05B.mspx, 2005.

[7] Khuzaima Daudjee and Kenneth Salem. Lazy database
replication with ordering guarantees. In Proc. IEEE
International Conference on Data Engineering (ICDE),
pages 424–435, 2004.

[8] Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel.
Database replication using generalized snapshot isolation. In
Proc. Symposium on Reliable Distributed Systems, pages
73–84, 2005.

[9] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick
O’Neil, and Dennis Shasha. Making snapshot isolation
serializable. ACM Trans. Database Syst., 30(2):492–528,
2005.

[10] Rainer Gallersdörfer and Matthias Nicola. Improving
performance in replicated databases through relaxed
coherency. In Proc. International Conference on Very Large
Data Bases (VLDB), pages 445–456, 1995.

[11] Hector Garcia-Molina and Gio Wiederhold. Read-Only
Transactions in a Distributed Database. ACM Transactions
on Database Systems, 7(2):209–234, 1982.

[12] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis
Shasha. The dangers of replication and a solution. In Proc.
ACM SIGMOD International Conference on Management of
Data, pages 173–182, 1996.

[13] Hongfei Guo, Per-Åke Larson, Raghu Ramakrishnan, and
Jonathan Goldstein. Relaxed currency and consistency: How
to say “good enough” in SQL. In Proc. ACM SIGMOD
International Conference on Management of Data, pages
815–826, 2004.

[14] Bettina Kemme and Gustavo Alonso. A suite of database
replication protocols based on group communication
primitives. In Proceedings of the 18th International
Conference on Distributed Computing Systems, pages
156–163, 1998.

[15] Bettina Kemme and Gustavo Alonso. A New Approach to
Developing and Implementing Eager Database Replication
Protocols. ACM Transactions on Database Systems,
25(3):333–379, 2000.

[16] Per-Ake Larson, Jonathan Goldstein, and Jingren Zhou.
MTCache: Mid-Tier Database Caching in SQL Server. In
Proc. IEEE International Conference on Data Engineering
(ICDE), pages 177–188, 2004.

[17] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo
Jiménez-Peris. Middleware based data replication providing
snapshot isolation. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 419–430, 2005.

[18] David Lomet, Roger Barga, Mohamed Mokbel, German
Shegalov, Rui Wang, and Yunyue Zhu. Transaction Time
Support Inside a Database Engine. In Proc. IEEE
International Conference on Data Engineering (ICDE),
2006.

[19] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, Honguk Woo, Bruce G. Lindsay, and Jeffrey F.
Naughton. Middle-tier database caching for e-business. In
Proc. ACM SIGMOD International Conference on
Management of Data, pages 600–611, 2002.

[20] Jim Melton and Alan Simon. SQL:1999 Understanding
Relational Language Components. Morgan Kaufmann, 2002.

[21] Mesquite Software Inc. CSIM18 Simulation Engine (C++
version) User’s Guide, January 2002.

[22] Oracle Corporation. Concurrency Control, Transaction
Isolation and Serializability in SQL92 and Oracle7, 1995.
Whitepaper.

725



[23] Oracle Corporation. Oracle8. Data Guard Concepts and
Administration, 2003.

[24] Christian Plattner and Gustavo Alonso. Ganymed: Scalable
replication for transactional web applications. In Proc.
Middleware, pages 155–174, 2004.

[25] Christian Plattner, Andreas Wapf, and Gustavo Alonso.
Searching in time. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 754–756, 2006.

[26] Calton Pu and Avraham Leff. Replica control in distributed
systems: An asynchronous approach. In Proc. ACM
SIGMOD International Conference on Management of Data,
pages 377–386, 1991.

[27] Ralf Schenkel and Gerhard Weikum. Integrating snapshot
isolation into transactional federation. In Proc. CoopIS,
pages 90–101, 2000.

[28] Ralf Schenkel, Gerhard Weikum, Norbert Weißenberg, and
Xuequn Wu. Federated transaction management with
snapshot isolation. In Eight International Workshop on
Foundations of Models and Languages for Data and Objects,
pages 1–25, 1999.

[29] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike
Spreitzer, and Marvin Theimer. Flexible update propagation
for weakly consistent replication. In Symposium on
Operating Systems Principles, pages 288–301, 1997.

[30] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike
Spreitzer, Marvin Theimer, and Brent W. Welch. Session
guarantees for weakly consistent replicated data. In
Conference on Parallel and Distributed Information Systems,
pages 140–149, 1994.

[31] Transaction Processing Performance Council. TPC
Benchmark W (Web Commerce), February 2001.
http://www.tpc.org/tpcw/default.asp.

[32] Shuqing Wu and Bettina Kemme. Postgres-r(si): Combining
replica control with concurrency control based on snapshot
isolation. In Proc. IEEE International Conference on Data
Engineering (ICDE), pages 422–433, 2005.

[33] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and
Jennifer Widom. View maintenance in a warehousing
environment. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 316–327, 1995.

[34] Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener.
Consistency algorithms for multi-source warehouse view
maintenance. Distributed and Parallel Databases, 6(1):7–40,
1998.

APPENDIX
A. SQL PHENOMENA
Four phenomena are possible under the ANSI SQL isolation levels
[3]:

DEFINITION A.1. A dirty write (P0) occurs in a transaction
execution history when some transaction T1 modifies a data item
and some other transaction T2 then modifies the same data item
before T1 commits or aborts.

The occurrence of P0 can lead to a problem if T1 or T2 later abort
since it is not clear what the correct value of the data item should
be.

DEFINITION A.2. A dirty read (P1) occurs in a transaction
execution history when some transaction T1 modifies a data item
and then some other transaction T2 reads that data item before T1

commits or aborts.

If T1 aborts, T2 has read a data item that was never committed,
resulting in an inconsistency.

DEFINITION A.3. A fuzzy or non-repeatable read (P2) oc-
curs in a transaction execution history when some transaction T1

reads a data item, some other transaction T2 then modifies or deletes
that data item and commits, and T1 then tries to re-read that data
item.

When T1 rereads the data item, it sees a modified value or finds the
value deleted.

DEFINITION A.4. A Phantom (P3) occurs in a transaction ex-
ecution history when some transaction T1 reads a set of data items
satisfying some search condition and some other transaction T2

then creates or deletes data items that satisfy T1’s search condition
and commits.

If T1 then rereads the data item with the same search condition, it
sees a set of data item values different from its previous read.

Some additional phenomena that are not part of ANSI SQL but are
mentioned in [3] are:

DEFINITION A.5. A lost update (P4) occurs in a transaction
execution history when some transaction T1 reads a data item and
some other transaction T2 then updates the same data item. T1 then
updates the data item (based on the earlier read) and commits.

A problem arises in that even if T2 commits, its update is lost.

DEFINITION A.6. Write skew (P5) occurs in a transaction ex-
ecution history if some transaction T1 reads data items x and y and
then some other transaction T2 reads x and y, writes x, and com-
mits. Then, T1 writes y.

The problem with P5 is that if there were a constraint between x and
y, it could be violated even if each individual transaction’s update
satisfies the constraint.

Note that serializability requires a history to be conflict-equivalent
to a serial history. Thus, none of the phenomena P0 - P5 can occur
in a system that guarantees serializability.

726


