
Optimizing View Queries in ROLEX
to Support Navigable Result Trees

P. Bohannon S. Ganguly H. F. Korth P.P.S. Narayan P. Shenoy

Lucent Technologies – Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974 USA�
bohannon,sganguly,hfk,ppsnarayan � @lucent.com

pshenoy@cs.washington.edu

Abstract

An increasing number of applications use XML

data published from relational databases. For
speed and convenience, such applications rou-
tinely cache this XML data locally and access
it through standard navigational interfaces such
as DOM, sacrificing the consistency and integrity
guarantees provided by a DBMS for speed. The
ROLEX system is being built to extend the capabil-
ities of relational database systems to deliver fast,
consistent and navigable XML views of relational
data to an application via a virtual DOM interface.
This interface translates navigation operations on
a DOM tree into execution-plan actions, allowing a
spectrum of possibilities for lazy materialization.
The ROLEX query optimizer uses a characteriza-
tion of the navigation behavior of an application,
and optimizes view queries to minimize the ex-
pected cost of that navigation. This paper presents
the architecture of ROLEX, including its model
of query execution and the query optimizer. We
demonstrate with a performance study the advan-
tages of the ROLEX approach and the importance
of optimizing query execution for navigation.

1 Introduction
XML has gained widespread popularity as a standard for in-
formation representation and exchange. Infrastructure soft-
ware for business hubs, supply-chain integration, and cata-
log management all use XML encodings. Standards bod-
ies for business data exchange, such as RosettaNet [21]

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

and Oasis-Open [18], are extremely active. The result is
a tremendous focus on incorporating support for XML in
application-development and data-management tools.

In some cases, an XML-based application may be de-
veloped from scratch, and perhaps require a storage facil-
ity for XML documents [3, 25]. However, in most cases
the XML-based application must interoperate with exist-
ing SQL-centric applications. In the typical “shred-and-
publish” approach to interoperation, incoming XML data is
parsed (shredded) into relational tables and outgoing data
is extracted by SQL engines and then formatted (published)
as XML. For example, a database supporting an SQL-based
hotel-reservation application may also be called on to sup-
port a web-site, or to exchange XML with a third party
“hub” for the travel industry.

Maintaining the mapping between the relational data
source and the associated XML documents is complex and
error-prone. Fortunately, recently-developed middleware
systems for XML publishing [5, 8] greatly ease this task
by providing a declarative language in which a view query
specifies the desired mapping. The view query is trans-
lated by the middleware into one or more SQL queries for
execution on the underlying DBMS, and a tagger process
constructs an XML document from the result. Furthermore,
commercial relational and object-relational databases are
becoming “XML-enabled” [20] by integrating certain mid-
dleware functionality into the DBMS. This may entail, for
example, supporting a modified SQL syntax that outputs
XML or allowing XPath queries against an XML view of the
database.

1.1 Caching and the “Back-Room” DBMS

Application-caching of database data is widespread, partic-
ularly in the web-facing applications that XML middleware
systems are designed to support. Data is cached primarily
for performance, and an experimental study by Labrinidis
and Roussopoulos [16] of caching web data both in and out
of the DBMS illustrates the problem. In almost every ex-
periment, caching outside the DBMS offered two orders of
magnitude better performance than caching within.



Query Logic

Tagger

Parser
Publisher

Application

RelDB

View  Query

XML Data

SQL

DOM

ROLEX-QP

ROLEX

Application

DataBlitz

View  Query

Virtual DOM

Navigational
Access

Shared Memory

The ROLEX System
Traditional Publishing

Model

Figure 1: Publishing architectures (a) current approaches (b) ROLEX approach

While caching may solve the performance problem, the
application cache is undesirable for a number of reasons.
First, multiple applications must each re-implement a por-
tion of the functionality provided by the DBMS. Second,
concurrency and data integrity among the caches and the
relational DBMS must be managed by the application(s).
This may lead to consistency problems when the underly-
ing relational data is being accessed and updated by pre-
viously existing applications, while cached copies of this
data are being used by e-business applications. Neverthe-
less, anecdotal evidence again indicates that this tradeoff is
made frequently, leaving the DBMS in the “back room”—
increasingly isolated from the bulk of web interactions.

1.2 ROLEX System Architecture

ROLEX1 is a research system for XML-relational interoper-
ation [4]. In short, ROLEX seeks to provide the functional-
ity of XML-relational middleware at the speed of cached
XML data. To achieve this, ROLEX is integrated tightly
with both the DBMS and the application, as shown in Fig-
ure 1(b). However, the integration with the application
is through a standard interface supported by most XML

parsers, the Document Object Model (DOM) [14]. Thus,
in general, an application need not be modified to be used
with ROLEX. To support our integration model and per-
formance goals, ROLEX is built on the DataBlitz �

�
Main-

Memory Database System, allowing us to capitalize on ex-
tremely low-latency access to data while still providing ad-
vanced concurrency control and recovery features [2]. We
expect ROLEX, when fully implemented, to be a compelling
platform with the best of two worlds: the speed of cached
XML files and the declarative data management tools and
consistency guarantees of the DBMS.

In particular, contrast the ROLEX architecture, shown in
Figure 1(b) with that of standard XML-relational middle-
ware shown in Figure 1(a). As shown, the results of a
ROLEX view query are provided to the application in the
form of a virtual DOM tree rather than as a text document.
Simply avoiding the cost of text generation and subsequent
parsing is an important benefit of this approach. In fact, for

1 ROLEX stands for Relational On-Line Exchange with XML.

simple queries, experimental results in this paper demon-
strate that ROLEX can produce a fully traversed query an-
swer in less time than it would take merely to parse that
answer from text form. While our system is based on a
particular main-memory database system, we expect the
model can be used with any closely-coupled architecture,
including database-aware caches [27].

In this paper, we focus on the ROLEX query execution
and optimization framework and on one critical way in
which we can capitalize on the virtual result tree: opti-
mizing our execution plan for user and application naviga-
tion patterns. The navigation opportunities for a user on an
SQL query are typically limited to the use of bi-directional
cursors. However, XML views of relational data can be
large and complex, and even considering a subset of DOM

functionality, user navigation on the result is potentially far
more complex and more frequent than for relational results.

1.3 Optimizing for Navigation

When query results are navigable, patterns of access to the
document tree may be user- or application-specific. Using
knowledge of these patterns, the ROLEX query optimizer
selects execution plans that are expected to outperform,
during navigation, plans optimized to generate the entire
document.

To illustrate, consider a travel hub that supports two ap-
plications, room browsing and convention planning. The
browsing application lets users examine hotels in a spe-
cific metropolitan area for an accommodation meeting their
requirements. In the convention-planning application, the
user tries to find a collection of hotels within an area that
satisfy multiple aggregate criteria (such as total room avail-
ability or conference room capacity).

Consider first the scenario where both these applications
have been developed using an XML view that conforms to
an industry-standard schema. In this case, the room brows-
ing application seldom, if ever, requests the information
in the tree about a hotel’s total conference-room capacity,
while in the convention-planning application, this informa-
tion may be accessed frequently. Clearly therefore, in the
room-browsing application, it would be desirable for the



optimizer to use a lazy evaluation strategy for retrieving
these data. ROLEX uses a navigational profile to represent
the probability of the application navigating along edges in
the DOM tree. In the example application, we would expect
the probability of navigating to a conference room to be
almost zero. An optimizer cognizant of navigational pro-
files is thus able to choose the lazy evaluation strategy, as
desired.

Alternatively, the XML view may be defined by the ap-
plication itself. For example, an application query may be
“composed” with the view query to produce a new view
query [9]. Such views conform closely to the actual needs
of the application. Therefore, in the browsing application,
computation of the total conference-room capacity would
be eliminated by a well-written application view. One
might expect this to obviate the need for a navigational
profile; however, this expectation turns out to be incorrect.
For instance, in the room-browsing scenario, a typical user
is likely to navigate to a few hotels from the query result
that satisfy certain user criteria. Therefore, use of a nav-
igational profile can reduce resource utilization, since not
all the query results that might be of interest are actually
accessed. If a view query uses two relations metroarea
and hotel, for example, a simple navigational profile may
be constructed by tracking the fraction of hotels accessed
among those in the given metropolitan area across multiple
previous invocations of the application. If this fraction is
small, the optimizer might choose to implement the query
using a nested-loop join between these relations. On the
other hand, if this fraction is large, the optimizer may ma-
terialize the join between these relations into a hash index
that is used to support navigation. We argue that complex
view queries contain many such tradeoffs; balancing them
is part of the optimization space explored by ROLEX.

In summary, navigation profiles offer significant oppor-
tunities for optimization of query execution, regardless of
whether the XML view is defined by a standard or by the
application. In the absence of support for navigation, an
application must either request all data that it might need,
or it must submit multiple, distinct queries to the system.
Both cases result in high processing overhead. By taking
the navigational profile of the application into account, the
ROLEX approach offers the promise of reduced resource
utilization and lower response time.

1.4 Contributions

The contributions of this paper are three-fold. First, we
describe the novel system model of ROLEX and its query
modeling and execution framework. Second, we describe
the modifications made to the design space and rule set of
a VOLCANO-style [13] rule-based optimizer to implement
optimization of ROLEX view queries. These modifications
include a new operator representing navigation, a model
of decorrelation for complex tree queries, and a new cost
model that takes into account the application’s navigation
profile. A critical result is that the integration is straight-
forward and the impact on the optimizer is limited. Our

hotelchain(chainid, companyname, hqstate)
metroarea(metroid, metroname)
hotel(hotelid, hotelname, starrating, chain id

metro id, state id, city, pool, gym)
guestroom(r id, rhotel id, roomnumber, type, rackrate)
confroom(c id, chotel id, croomnumber, capacity, rackrate)
availability(a id, a r id, startdate, enddate, price)

Figure 2: Hotel reservation schema

third contribution pertains to optimization for the expected
cost of navigating the result XML tree. In fact, we show
that optimizing for expected navigation, even with a very
simple navigational profile, can improve performance sub-
stantially when the application or user’s navigation fits the
profile, and in most cases this plan is robust if the naviga-
tion is somewhat different than expected.

1.5 Outline of the Paper

The outline of the remainder of the paper is as follows. In
Section 2, we introduce our running example and describe
queries and navigation profiles. In Section 3 we introduce
the virtual DOM tree and navigable query plans. Section 4
describes the space of decorrelation options we consider. In
Section 5 we describe how a VOLCANO-style optimizer is
extended to optimize ROLEX view-queries. The cost model
used by the ROLEX optimizer to account for navigational
profiles is presented in Section 6. Experimental results are
presented in Section 7. Related work is discussed in Sec-
tion 8, followed by our conclusion and a discussion of fu-
ture work in Section 9.

2 Model for Queries and Navigation

This section introduces the view queries accepted by
ROLEX and presents our model of navigation profiles.

2.1 Schema-Tree Queries

In this section, we introduce view-query specification in
ROLEX using the example shown in Figure 3. This query
format, referred to as a schema-tree query, is meant to cap-
ture a rich set of XML view queries, and is adapted from
the intermediate query representation of [9]. This particular
example defines an XML view on the tables of Figure 2 that
supports conference planning by showing candidate hotels
along with information about availability of rooms in the
same metro area.

Each node in the schema-tree query includes a tag, a
tag query, and a binding variable. Each tuple returned by
the tag query becomes an element in the resulting XML

document. Relational attributes can be mapped to XML

attributes or subelements; however, these details are not
shown. The binding variable associated with a node is used
in descendant nodes as a tuple variable ranging over the re-
sults of the tag query. For example, the top-level node in
Figure 3 has the tag <metro> and the tag query “

���
=

SELECT metroid, metroname FROM metroarea.” (We sub-
script the tag query with the binding variable, in this case���

.) This query defines a list of metropolitan areas, which



FROM    confroom
SELECT SUM(capacity)

AND   startdate =       .startdate

WHERE  chotel_id =      .hotelid

AND   enddate >= 2/1/01

<confstat>

<metro_available>

<hotel_available>

<hotel>

FROM    confroom
SELECT  *

AND    startdate <= 1/1/01

WHERE  chotel_id =     .hotelid

FROM     metroarea
SELECT metroid, metroname

WHERE  rhotel_id =      .hotelid
FROM     availability, guestroom

AND    a_r_id = r_id

<metro>

SELECT   *  FROM hotel

<confroom>

WHERE   metro_id =       .metroid
      AND  starrating > 4

SELECT  COUNT(a_id)

AND    enddate  >= 2/1/01

GROUP BY  startdate

SELECT  COUNT(a_id)

AND    a_r_id = r_id

FROM     availability, hotel, guestroom
WHERE   rhotel_id = hotelid

AND   metro_id =      .metroid

$h

m

$m

$h

$m

Q   =

h

c

a
Q  =

Q   =

$h

$a

Q  =s

Q  =

Q  =

Binding Var.

$m

Tag

v

$c

$s $a

$v

$h

$h

$h

$h $m

$a, $m

Parameters

Figure 3: An XML view query and its associated schema
tree

become sibling nodes in the resulting XML document, each
tagged with the <metro> tag (a unique document root is
implied). For simplicity of presentation, tags and binding
variables are unique and mutually exclusive in this paper
(in general, tags could be repeated).

As mentioned above, the binding variable for a node
may be used as a parameter when specifying tag queries of
descendant nodes in the schema tree. For example, the vari-
able � associated with <metro> is used as a parameter in
tag queries for <hotel> and <metro available> to refer
to the attribute � .metroid. Tag queries may be parameter-
ized by zero or more parameters, associated with the same
or different binding variables. We refer to the query which
defines binding variable � as

� � �����	�
������������������ , where� � ��� � ����������� �
are the binding variables mentioned in the

body of
� � .

The remainder of the view in Figure 3 defines the fol-
lowing. The tag query,

��� � � �
for <hotel> is parameter-

ized by the tuple variable � running over metropolitan ar-
eas and gives a list of hotels in that metropolitan area. The
tag query,

��� �����
, for <hotel available> counts avail-

able rooms at the given hotel in a certain fixed time period,
whereas the tag query,

��� � � �
���
for <metro available>

counts the total available rooms in the entire metropolitan
area for that same time period. In separate branches of the
schema-tree, summary and detail information about confer-
ence rooms is given by the nodes with tags <confstat>
and <confroom> respectively.

<hotel_available>

<metro>

<hotel>

<metro_available>

<confroom>

<confstat>

0.1

1.0 0.2
0.1

0.2

Pr{hotel|metro}

Figure 4: A sample navigational profile

2.2 Navigational Profile

As mentioned in the introduction, ROLEX uses a naviga-
tional profile for a user or application when optimizing
view-query plans. While navigational profiles can, in prin-
ciple, be quite complex, we currently adopt a very simple
model. If � is a node in the schema tree with parent � ,
the navigation profile stores �� � �"! � � , or the probability
that some node in the DOM tree generated by � will be vis-
ited given that its parent, generated by � , has been visited.
One simple way to estimate this probability is by collecting
the corresponding statistic at each schema-tree node dur-
ing application navigation. Exploration of more sophisti-
cated navigation profiles that might, for example, consider
data values or navigation order, are left as future work. An
example navigational profile for the query of Figure 3 is
shown in Figure 4.

3 Virtual DOM

An application using ROLEX accesses data through a
standard interface called the Document Object Model
(DOM) [14]. The navigation functions implemented by
DOM are as one would expect: parent-to-child, child-to-
parent, and sibling-to-sibling. We also support navigating
to the first child with a particular tag. A DOM interface to
an XML view query supports all the DOM operations and
behaves as if the user were navigating the XML document
resulting from the query. For example, this might be ac-
complished by navigating the query results and building a
DOM tree. A virtual DOM tree goes a step further by provid-
ing the same interface without creating the physical DOM

tree. A navigable query plan, which we describe next, is
the mechanism used by ROLEX to support a virtual DOM

tree.
A navigable query plan provides, for each node � in the

schema tree of a view query, two entities: (1) a subplan for
evaluating the tag query for � , and (2) a navigation index,#%$'&

. The navigation index serves to materialize the output
of the tag query and supports efficient lookup based on pa-
rameter values. The subplan may populate the navigation
index lazily or eagerly as decided by the optimizer, and it
may also materialize results to be used by other subplans.

The navigation index is distinguished from a normal
(hash or tree) index by two additional features: (1) given a



procedure nav-to-child( � )
begin
Assume tag query for � is

� ��� �	����������������	� �
1. Extract parameter values for

� �	����������������	�
from

current tuples of � ’s ancestor nodes
2. Search

# $��
for

� � �
� � ����������� �
parameter values

3. if not found then
4. Use

� � ��� � ������� ��� �
to initialize the subplan for �

5. Add results of plan to
#%$��

6. endif
7. Use

# $��
to support sibling navigation

end

Figure 5: Navigation from parent to child node �
pointer to an entry in the index, the successor and predeces-
sor matching the same key value can be reached efficiently,
and (2) the index can record the fact that certain param-
eters produced empty results. These capabilities allow us
to support DOM tree operations on the schema-tree view
without explicitly generating the document; effectively im-
plementing a virtual DOM interface. For example, the ac-
tions taken on navigation from a parent to a child node are
given as pseudo-code in Figure 5. Although not shown in
the pseudo-code, if the subplan is pipelined, results from
the subplan can be materialized into

# $ �
lazily during user

navigation. Though it might be beneficial to continue ex-
ecuting the query plan “ahead” of the user while waiting
for the next DOM-traversal step, we do not consider such
“speculative” execution in this paper.

4 The Decorrelation Plan Space

Decorrelation has been studied in the context of generat-
ing equivalent executions for correlated SQL queries in
[6, 11, 15, 24]. In all previous work of which we are
aware, plans are decorrelated when possible on the heuris-
tic assumption that the decorrelated execution can be op-
timized better. On the contrary in ROLEX, when the navi-
gation profile indicates that a node will seldom be visited,
correlated execution may be preferred. Various subsets of
tag queries may be decorrelated, and the navigation pro-
files for which each is optimal obviously depends on the
queries, database structures, and statistics. In this section,
we discuss how we use standard decorrelation transforma-
tions to generate a space of equivalent plans for schema-
tree queries. While these transformations are implemented
at the plan level, they are more easily described at the SQL

level, the approach taken in this section. The embedding of
this plan-space in a VOLCANO-style optimizer is discussed
in the next section.

4.1 Single-Parameter Decorrelation

In this section, we describe the basic transformation used to
decorrelate a single parameter from a node query. Consider
a tag query,

� � ��� � , which defines the variable � and has a
single parameter

�
and takes the following form:

procedure nav-to-child-dec( � )
begin
Assume tag query for � is

� ��� �	����������������	� �
Assume decorrelated plan for � is

���	�
������ ��� ���"�
,

where
��� �����
� � ���������
� ��� �

may be empty
1. Extract parameter values for

� � ��� � ����������� ���
from

current tuples of � ’s ancestor nodes
2. Search

# $��
for

� � �
� � ����������� �
parameter values

3. if not found then
4. Use

���
� � ������� ��� � �
to initialize the subplan for �

5. Add results of plan to
#%$��

6. endif
7. Use

# $��
to support sibling navigation

end

Figure 6: Navigation to child � , with decorrelated plan

SELECT select-list FROM from-list
WHERE preds-list GROUP BY group-by-list
HAVING having-list ORDER BY sort-list

where
�

is defined by an ancestor tag query,
���

. We de-
note by

� �� the query corresponding to
� � ��� � that has been

decorrelated with respect to
� �

.
� �� is defined by the fol-

lowing SQL query:

SELECT select-list FROM from-list, ��� as temp
WHERE new-preds-list GROUP BY group-by-list
HAVING new-having-list ORDER BY sort-list

where the list of relations in the FROM clause includes
the definition of the query

� �
renamed as a new relation

temp. We obtain new-preds-list and new-having-list from
their previous counterparts by replacing each occurrence
of the parameter

�
by temp. Note that if the query

� �
had a parameter  , i.e.,

� � �  � , then the above decorrelated
query would also be parametrized by  , that is

� �� �  � . The
decorrelated query

� �� �  � can then be decorrelated further
to eliminate the parameter  and thereby obtain

� ��!� . Each
of these decorrelated queries may be a candidate for further
query transformations like those described in [15]. Since
these transformations are standard in the literature on query
processing, we do not present details here.

4.2 Multi-Parameter Decorrelation

The extension of the technique above to tag queries with
multiple parameters is straightforward. Consider a tag
query

� � ��� � �
� � ������� �
� � � , parameterized by " binding vari-
ables,

� � ��� � ������� ��� �
. The idea is to treat

� � as a query
with a single parameter, corresponding to the binding vari-
able for the schema-tree node that is lowest, or closest to� � , in the tree. We decorrelate this query to remove one
variable, say

�$#
, and possibly add several more; however,

these variables are defined higher in the tree than
�%#

. We
continue this process until a fully decorrelated query is ob-
tained. The decorrelation space for

� � �������
��� ���������
�	� � is
the set of queries obtained during this process. In the ex-
ample shown in Figure 3, the <metro availability>
tag query,

� � ��& � � �
, has two parameters,

&
.startdate and� .metroid. Based on this discussion, the decorrelation



space for
� � ��& � � �

is
� � � ��& � � �

,
� �� ��� � � �

,
� � �� � � �

,� � � �� � � � .
When the final plan chosen to implement a node, say

� , is not completely decorrelated, then the parameters used
to initialize the plan differ from those used as a key for � ’s
navigation index,

# $ �
. A modified version of the algorithm

given in Figure 5 that handles this case is shown in Figure 6.

4.3 The Ups and Downs of Decorrelation

Typically the result of a decorrelation step is the elimina-
tion of the subquery. As noted above, ROLEX deviates from
this by retaining the correlated subplan, since it may be
better to use the correlated subplan for nodes with lower
navigation probabilities. However, there is a more striking
difference in the ROLEX approach: as seen above, the re-
sult of a decorrelation step in ROLEX is to replace the child
plan, while leaving the parent plan intact. When viewed in
the context of a schema-tree query, this transformation is a
“down” decorrelation, since parts of queries always move
down the tree, as opposed to the “up” decorrelation which
is standard.

An obvious drawback of this approach is duplication;
for example, a complicated expression near the root of the
tree may be duplicated in a number of leaf nodes, due to
“down” decorrelation. However, this problem is alleviated
by three factors. First, a significant simplicity arises from
the fact that we do not need transformations for outer-join
operations. Second, the resulting size of the decorrelation
space for “down” decorrelation is no larger than the number
of nodes in the tree times the height of the tree, while the
number of possible “up” plans is exponential in the number
of nodes in the tree (since any subset of the children of a
node can be decorrelated with it). The third advantage of
performing “down” decorrelation is an artifact of the opti-
mizer [22] we are extending. Since that optimizer was de-
signed for multi-query optimization, it is particularly good
at factoring the common expressions generated by “down”
decorrelation.

5 Optimizing Navigable Query Plans

The ROLEX query optimizer is built on top of a rule-based
query optimizer designed for multi-query optimization [22]
that implements many of the features of VOLCANO [13].
ROLEX could alternatively employ a bottom-up approach
as in [23] but we do not consider that possibility here. In
this section, we review the VOLCANO data structures, de-
scribe how the ROLEX plan space is implemented in this
framework and discuss our materialization strategy for sub-
plans.

5.1 The VOLCANO AND-OR DAG

In the VOLCANO AND-OR DAG, each OR node (also called
an equivalence class) represents alternative ways to eval-
uate a subexpression, say

�
, of the original SQL query.

Each OR node has one or more AND node children, where
each child represents the top relational-algebra operator of

m

h h

a a a

Qm

(m)Qh Qm
h

Qa(h)

n

Qa
h(m)

Qa
mh

EQa

tag query Q
Subplan for

Operator
Virtual DOM

Equivalence Class
Virtual DOM

<hotel_available>

subplan
sharing

Qn

...... ...

n

Figure 7: Virtual DOM AND-OR nodes

a subplan implementing
�

. For example, if an OR node
represents �������	� , it may have two join-operator
children, one, say 
 � representing the join between � and� ����� � and the other, say 
 � representing the join be-
tween

� ���� � and � . The children of AND nodes are,
in turn, the OR nodes corresponding to the subqueries of
its operands. For example, the 
 � operator in the above ex-
ample has an OR-node child representing different ways of
computing

� ����� � .
Common subexpressions appear once in the DAG struc-

ture; for example, all operators with an input equivalent to
��������� point to a single equivalence class for this
expression. At an abstract level, the optimization proceeds
as follows: once all the logical transformation rules are ap-
plied to expand the DAG (e.g. join reordering), a branch-
prune pass is made to find, in a bottom-up manner, the best
(cheapest) physical execution strategy for each AND node,
and by extension, the OR node with which it is associated.
For more details, see [22].

5.2 Logical Operators for Navigation

To represent our execution space, we add two new types
of nodes, an OR node called the virtual-DOM equivalence
class, and an AND node called the virtual-DOM operator.
We explain the function of these new nodes with the ex-
ample DAG shown in Figure 7. This figure shows a por-
tion of the AND-OR DAG representing the decorrelation
space of the schema-tree query from Figure 3. We as-
sociate a virtual-DOM equivalence class, say

��� &
, with

each schema-tree node � , to represent decorrelation alter-



natives. For example, the node labeled
��� �

is the equiv-
alence class for the decorrelation space of

��� �����
, the tag

query for the <hotel available> node. Each child, � �
(labeled “

&
” in Figure 7) of

��� �
is a virtual-DOM operator

implementing one decorrelation strategy for that schema-
tree node. During plan execution, these operators perform
the nav-to-child-dec procedure from Figure 6. The first
(leftmost) input of a virtual-DOM operator � & , is the OR-
node of the relational subplan for node � . The remaining
inputs are virtual-DOM equivalence classes that correspond
to the children of the schema-tree node � in the schema-
tree query. These edges represent the navigation options of
the application query.

The fact that the VOLCANO DAG structure consolidates
common subexpressions ensures efficient optimization of
the ROLEX decorrelation plan space. In particular, when a
query

� � ��� � is decorrelated with
� � �  � to produce

� �� �  � ,
the entire subplan for

� � �  � is included in the plan for� �� �  � . This is shown in Figure 7 by the edge labeled “sub-
plan sharing.” Of course, as the logical DAG is expanded by
other transformation rules, the plan for

� �� �  � explores, for
example, join orders not usable in the

� � �  � plan. How-
ever, those subplans in common are shared and optimized
once.

5.3 Opportunistic Materialization

Each equivalence node and operator (not just virtual-DOM

nodes) is labeled by the set of parameters that appear in the
DAG rooted at that node. We use this information to mate-
rialize subplans opportunistically, so that a given physical
operator is executed only as many times as required by its
bindings. In particular, we mark as materialized any op-
erator whose parent parameter set is a proper superset of
its parameter set. This subplan is re-initialized whenever
a binding variable in its parameter list changes. Note that
this follows the approach taken in [19] in which subexpres-
sions with exactly zero bindings are executed only once.
We generalize this to materialize at the appropriate level for
the bindings present. For example, selection on hotel for
a particular � .metroid appearing in the subplan for

� �� � � �
in Figure 7 is executed exactly once for each metro area,
rather than once for each <hotel available> node.

6 Cost Estimation
Since ROLEX explicitly considers a space of both correla-
tion and decorrelation options, as opposed to attempting
to maximize the amount of decorrelation, it is important
to cost complex correlated plans with reasonable accuracy,
including the “opportunistic materialization” discussed in
Section 5.3.

This section shows how we estimate the key components
of our cost model: (1) the number of visits to a node and (2)
the number of tuples produced by such a visit. The number
of visits to a node is somewhat complex to compute since it
depends on the number of unique values generated for the
node’s parameters during the execution. In ROLEX, the cost
for each node represents the estimated contribution of that

node to the total cost of the user navigation. A node that
contains a parameter may be executed multiple times, and
the cost of that node includes the expected number of exe-
cutions, the cost to materialize these executions if needed,
and the cost to use the materialized versions the appropriate
number of times.

The cost model presented in this section is implemented
by extending the cost model of a traditional SQL opti-
mizer and additionally uses information about functional
dependency and foreign-key constraints over the database
to make estimations more accurate [12]. Extending the
model to handle navigation profiles is accomplished rela-
tively easily, supporting the claim that traditional query-
optimization techniques can be modified easily to optimize
for navigational profiles.

6.1 Estimating Schema-Tree Statistics

Two basic components of our cost model for schema-
tree nodes and their associated tag queries are visits and
unit-size. The expected unit size of a node � , denoted�������
	�� � � � is the expected number of tuples produced
by a single “unit” call to � ’s tag query with represen-
tative parameter values. This number is estimated us-
ing traditional size estimation techniques for SQL queries.
For example, consider the tag query

� �
, associated with�������� in Figure 3. Using the cardinalities of Table 1,�������
	�� � �������� � � �������
	�� � � � � �����
. And similarly,

if we assume a) uniform distribution of hotels in the metro
areas, and b) the star ratings for hotels (hotel.starrating)
range uniformly from � to � (hence our query has 0.5
selectivity),

����� �
	�� �"! ������# � � �������
	�� � � � � � �
� �� � �$����%��$� �'&(� � � � � � . (While the discussion and ex-
amples assume uniform distribution for simplicity, the cost
model in this section generalizes in a straightforward man-
ner to use histogram information if available.) We define�������
	�� �*),+�+�-
� � � where

).+/+$-
is the implied root of the

schema-tree query. We overload
�������
	��

to the fields that
appear in the output of a query as follows: if fld is a field
in the output of the query at node � , then

����� �
	/� �1032 � � � is
the expected number of distinct values of fld resulting from
a single call to � .��4��65 � � � denotes the expected number of “visits” to
node � during a traversal that obeys the navigational pro-
file. If all probabilities in the navigational profile are 1,��4��65 � � � corresponds to the number of DOM nodes gener-
ated by � in a full result document. If � � � � is the parent of� , we calculate

�74��65 � � � recursively as:

8'93:6;/<>=@?A?�B@CED(F
8'93:6;/<"G�CHDJIK=�LMGONQP�<"G C@RTSU8V93:6;�<WP <"G�C@C�S78'X3Y�:[Z]\^<WP�<"G C@C

That is,
��4��65 � � � is the expected number of � � � � tuples

(computed as the product of the expected number of vis-
its to � � � � and the expected number of tuples generated
per visit) times the probability that a � � � � visit leads to
a visit to � . In our example,

�74��65 �1! ������# � �_�$�
(once

for each �������� ) if navigation probabilities are all 1, but



Table Tuple Size (Bytes) Cardinality
hotel 54 1000
metroarea 128 50
phone 24 3000
guestroom 20 40000
confroom 20 10000
availability 20 800000

Table 1: Table Cardinalities for Experimental Queries

given the navigation profile shown in Figure 4, in which� ) �]! ������# ! �������� � � � ���
,
��4��65 �1! �$����# � would be only

� � . Note that
�74��65 � � � estimates the number of lookups

made to the navigation index for � .

6.2 Binding Variables and Parameters

Since the navigation index ensures that a subplan is not
called with duplicate parameters, the number of unique
parameter bindings seen at a node � is the expected
unique calls of the subplan for � , which we denote as�����3�����
	���W5 � � � . Consider the �������� �������$#�����#�� node in
Figure 3. The query for this node,

��� ��& � � �
, is parame-

terized by � .metroid and
&
.startdate. We need to estimate

the number of unique ( � .metroid,
&
.startdate) pairs that we

expect will be seen at the ��$����� �������$#�����#�� node in order
to estimate

�����3������	���W5 � �������� �������$#����3#�� � .
In some cases, like the

! ������# node of Figure 3,�����3�����
	���W5 � � � � ��4��65 � � � . Since
� ) �]! ������# !�������� � � � � �

in the navigational profile shown in
Figure 4, we can estimate that

�����3������	���W5 �"! ������# � �
� � , and we say that � � unique �������� .metroid val-
ues are “visible” at

! ������# . However, in general,�����3�����
	���W5 � � � and
��4��65 � � � numbers can differ; for ex-

ample,
������������	���[5 �  ������� ��������#�����#�� � has far more vis-

its than unique calls since it depends on the metro area and
the startdate and thus its contents may be the same for sev-
eral hotels in that metro area.

In order to compute
�����3������	���W5

, we need two auxiliary
statistics � 4

and
����������� ����

. For a virtual DOM node
&

,� 4 �"032 � & �
is an upper bound of the expected number of

distinct values of
032

produced by the query at node
&

over
all visits to that node. Since we assume hotel.starrating
range uniformly from � to � in our running example,� 4 �! #"%$�&'&($)"�*,+.- �Q! ������# � is / (0.5 selectivity). And since0.1 "#2�3 * 2

is the key for hotel, we get � 4 � 0.1 "#2�3 * 2 �*! ������# � �
� ���$��& � �W��� �����

.�����3���4� ��5� � � � 032 � � � is the estimated number of dis-
tinct bindings (or values) that the parameter � � 032 takes at
a node � , given that � is defined at node

&
and � is either&

or a descendant of
&
. The calculation for

�����3���4� ��5�
is

defined recursively as follows:
8'X�6�:!7%8 :(6�9�<:�; <�=?>@G CHD@BADCFE < 8VX�6�:!7)GIH)JKJ ;/<L�C S�8'X3Y�: ZM\^<(<�=?>ML�C%>ON�9T<(<�=�>ML�C@C

(n=a)ADCFE < 8VX�6�:!7%8 :K6�9�<:�; <�=?>"P�<"G C@C%>*8V9�: ;�<"G C@C
otherwise

where � � � � is the parent node of � . In the � � &
clause,

we estimate the value of
����������� ���� � � � 032 �
& � , at node

&
where � � 032 is generated, as the lower of two upper bounds.

The first bound is obtained by assuming that distinct param-
eter bindings result in disjoint output sets; whereas the sec-
ond one is the output-domain size, � 4 �1032 � & �

. The “other-
wise” clause asserts that for P values of some field to appear
at a node or any of its descendants, there must be at least P
visits to that node. This last point can be seen by consid-
ering the evaluation of

����������� ���� � � �RQS2T"U& 1 * 2 �Q! ������# � ,
which is limited to � � by the number of visits to

! ������# .
We now estimate

�����3������	���W5 � � � recursively, by utiliz-
ing the statistic

����������� ���� � � � 032 � � � . Suppose the query
at node � is

� � ��� � �	� � ���������
� � � . We first classify the pa-
rameters

� � �	� � ������� �
� �
into two sets, independent parame-

ters and dependent parameters. A parameter
� �

is said to
be dependent if it is functionally dependent on some sub-
set of the remaining parameters. For example, if a query in
Figure 3 used both

�
.hotelid and � .metroid, we use schema

information to infer that the parameter
�

.hotelid determines� .metroid, and thus only
�

.hotelid should be considered for�����3�����
	���W5
. Assume, without loss of generality, that the

first "�V parameters,
�'���	�����������
��� � � "�VXW " , comprise the set

of independent parameters. In this case, the calculation of�����3�����
	���W5 � � � is

8'X�6�:!7)GIHYJ(J ;]<"G�CED �[Z G]\.^`_ �aKb5c 8VX�6�:!7%8 :K6�9�<d a >@G C%>,8V9�:6;/<"G C'e

Clearly, each of the operands to the fhgKi operator above are
upper bounds to

�����3������	���W5 � � � .
6.3 Operator Costs and Optimization

In this section, we discuss how we assign costs to the AND

nodes in the VOLCANO AND-OR DAG and compute the op-
timal plan (by assigning costs to the OR nodes) during a
bottom-up pass of the DAG.

Our approach is to extend the notion of
������������	���W5

to
each OR node. We label each OR node,

���
, with the set of

parameters
� � �	� � ���������
� �

that are used in the subtree rooted
at
���

, and overload
������������	���[5 � ��� �

to denote the ex-
pected number of unique calls as a result of the bindings
for parameters

� � �
� � ���������	� �
. Note that

���
may be shared

across query plans for multiple schema-tree nodes. Letj � � � � � � � ��������� �lk � be the set of schema-tree nodes
whose query plans use

���
. As before, we first obtain

the independent subsequence of parameters
d c >Md.mT>4;4;U;�>Md _ � .

Then,
8'X�6�:!7)GIHYJ(J ;]<!nSo CHD
�[Z G]\.^ _ �aRb5cqpsrut)v.w � nyx G Z!zY{SZ G�|�<d a >ML�Cs}�> r�~Mv.w 8'93:6;/<�MC'e

where, for any set of schema-tree nodes
j

,
j V is the set

of nodes in
j

whose parent nodes are not included in
j

.
The second term is the upper bound of all visits to

� �
from schema-tree nodes that use it in their query plans. The
above is a conservative estimate of the unique calls to

���
,

which may lead to sub-optimal plans sometimes; a better
heuristic of estimating the calls will be addressed in future
work.



CREATE VIEW view1 AS

<hotel>
(
�

=
SELECT hotelid, hotelname, starrating, state id
FROM hotel

)
<avail>
(
&

=
SELECT rhotel id, startdate, rhotel id, roomnumber
FROM availability, guestroom
WHERE type � 5 AND rhotel id =

�
.hotelid

AND startdate � 12/15/02 AND r id = a r id
)
</avail>

</hotel>;

Figure 8: XML view query for experiments

For every AND node (relational or virtual DOM opera-
tor), � that is a child of OR node

���
, we use standard query

processing techniques to estimate its cost
��������� + 5 - � � � .

To compute the aggregate cost of node � across invoca-
tions with different bindings, we multiply

��������� + 5 - � � � by�����3�����
	���W5 � ��� �
.

The bottom-up process of costing is also an optimiza-
tion algorithm, since for each of the OR nodes, we keep
the cost corresponding to the minimum-cost child among
all its children. The process just outlined gives the plan
for the query for each tag. Common subexpressions in the
resulting plan are materialized; incorporating a greedy al-
gorithm to consider the benefit of potential materialization
as proposed in [22] is left for future work.

7 Performance

In this section, we present the results of our performance
study on the ROLEX prototype. After describing our im-
plementation and experimental settings, we investigate the
utility of optimizing plans for navigation profiles and the
impact of view-query complexity on the number of distinct
plans produced by differing navigation profiles. Finally, we
return to the higher-level issue of the overall performance
potential of the virtual DOM approach.

7.1 Implementation

The ROLEX prototype consists of three subsystems: the op-
timizer, the execution engine, and the virtual DOM layer.
The execution engine and DOM interface operate on the
tuple-layer interface of the DataBlitz �

�
Main-Memory

Database System. Note that, although the data is memory
resident, many costs of a full-featured DBMS remain, in-
cluding locking, latching, support for multiple data types,
null handling, etc.

The execution engine has been built to serve as a gen-
eral in-memory relational query-execution engine, as well
as the execution engine for ROLEX. The engine handles
a variety of join techniques, group-by and aggregates, and
the materialization options discussed in Section 5.3.

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e 
in

 m
ill

is
ec

on
ds

Probability of exploring <avail> nodes

P1
P2
P3

Figure 9: Performance of plans �7� through ��� as a func-
tion of navigation probability for the view query in Figure 8

7.2 Experimental Setting

In our experiments, plans were generated by the ROLEX op-
timizer, and executed on a Sun Ultra 60 with two 295MHz
CPUs running SUNOS 5.7. The schema is as shown in Fig-
ure 2, with record sizes and tuple cardinalities as given in
Table 1. Though the database is entirely resident in RAM

the bigger tables are significantly larger than CPU cache.
Presently, the DOM interface layer has been developed

only as a proof-of-concept independent of the execution en-
gine. Thus, for these experiments, a driver was built on the
execution engine to simulate an in-order scan that obeys a
set of navigation probabilities – that is, a schema child of
a node is visited only if the probability specified for that
child is met by a random test. As a result, re-traversal cost
of already-computed results is not measured.

7.3 Impact of Navigation Profiles

We observe that, within the parameters of our system, gen-
erating an execution plan for all probabilities set to 1.0 most
closely approximates a plan optimized for document ex-
port. Similarly, a plan optimized for low (but non-zero)
probabilities at nodes lower in the tree most closely ap-
proximates the heuristic of attaching all child plans to their
parents by outer joins. The general approach of our exper-
iments is to compare these two “extreme” plans to the plan
chosen by the ROLEX optimizer, across a range of probabil-
ities, with our contention being that neither “extreme” plan
performs well across the range.

In our first experiment, we consider the view query
shown in Figure 8. For this view query, the ROLEX op-
timizer finds three optimal plans ( �7� , � � , and ��� ) as
the navigation probability is varied from

� � � � to � � � and
estimates that they are optimal in the ranges � � � � �,� � � � � ,
� � � � � �.� ���$� � , and

� � ���$� � � � �	� , respectively. Due to lack of
space, we do not show the plans in this paper. The actual
performance of each of these plans as a function of naviga-
tion probability is shown in Figure 9. The figure shows that
the three plans �7� , � � , and ��� actually are optimal in the



0 10 20 30 40 50

h-c-s-a-v
h-c-s-a
h-c-s-v
h-c-a-v
h-s-a-v

h-c-a
h-s-a
h-c-s
h-c-v
h-a-v
h-s-v

c-s-a-v
h-a
h-c
h-s
h-v

c-s-v
c-a-v
c-s-a

c-v
c-a

s-a-v
h

c-s
s-v
a-v
s-a

v
c
a
s

N
av

ig
at

io
n 

P
ro

fil
es

 V
ar

ie
d

Number of Plans

Figure 10: Number of plans from navigation profiles

ranges � � �,� � � � � , � � � � � �.� � � �
, and � � � � � � � , respectively. The

high-probability plan is the decorrelated plan, where the
query of the <avail> node is re-written to do a join with
the query of the <hotel> node. This join is evaluated only
once; the first time any <avail> node is visited. Hence
the high cost of plan ��� at low probabilities. Execution
time of the plan �7� , which is optimal at low probabilities,
grows linearly with increasing probability, and executes in� � � seconds for a probability of � � � . This is not shown in
Figure 9. The error in the probability cutoff, attributed to
cost-model variances, leads to a 5% to 15% sub-optimal
execution.

However, Figure 9 emphasizes that there exist distinct
optimal plans for different regions of the probability space.
The experimental results confirm that executing a plan
optimized for very low probability values such as �7� is
highly sub-optimal at high probability values and vice-
versa. Since the plan for probability of � � � corresponds,
in our model, to the scenario of full document export, we
conclude that such plans are sub-optimal at the lower end
of the navigation probability spectrum.

7.4 Number of Plans Generated

As seen in the above experiment, relatively few plans are
generated by varying the navigational profile on a small
query. So, in our next experiment, we show how the num-
ber of plans found changes as the complexity of the query
increases. For this, we varied the navigational probabilities
of a set of nodes in the view query of Figure 3, while keep-
ing the other nodes at probability � � � (or

� � �
). At each in-

stance of these probabilities, we optimized the view query
in ROLEX, and thereafter counted the number of different
plans obtained. The results of this experiment, when the
probability of the other nodes was kept at � � � , are shown in

Figure 10. Similar results were seen when the probabilities
of the other nodes were set at 0.

In this figure, the binding variables shown in Fig-
ure 3 are used to indicate which navigational probabili-
ties are being varied. For example, we varied the prob-
abilities of exploring <hotel>, <confstat> and <ho-
tel available>, and the result is labeled as “h-s-a” in
Figure 10. The probabilities were varied such that the num-
ber of visits to a node from its parent ranged exponentially
from

� � � ��� � / ��������� � , where � is the maximum number of
visits (probability � � � ). Since we varied the probabilities of
5 nodes, about 3200 samples were generated.

From this experiment, we see that the number of dis-
tinct execution plans generated for a given view query can
be large. For Figure 3, we found 43 different plans when
we varied the navigational profiles of all the 5 nodes. The
experiment demonstrates that many distinct plans can be
generated when just a few probabilities are varied. For ex-
ample, when the navigational profile of only <hotel> was
varied, we got upto 6 different execution plans. This ex-
periment supports the idea that, as view queries become
complex, optimizing for specific navigational profiles will
become increasingly important.

7.5 The Virtual-DOM Approach

In our final experiment, we deviate from our focus on query
optimization and use the ROLEX prototype to evaluate the
potential of the virtual DOM approach to compete with ap-
plication caches of XML data. In particular, we compare the
time taken for execution and traversal of a ROLEX query to
the time taken to parse the result of the same query in the
most mature C++ XML parser available that supports DOM,
Xerces V1.6 [26]. To perform this experiment, we use a
less selective version of the view query shown in Figure 8
(the date cutoff is changed to “10/05/02”) so that larger re-
sults can be obtained. We vary the navigation probabil-
ity as in the first experiment to vary the size of the result
(from about 2000 elements to 125386 elements), and pro-
duce a file containing these elements for parsing. Further-
more, for each tuple returned, we include only the ROWID

of the tuple in the output element, as the parse would take
longer for additional attributes or subelements in the out-
put. The parser was compiled in its “optimized” mode, the
native transcoder was used, and no DTD-validation was per-
formed. We used both the traditional DOM implementation
and newer “IDOM” variant provided by Xerces. The results
of this experiment are shown in Figure 11.

Since this experiment compares two very dissimilar
activities, parsing and query execution, fine conclusions
should not be drawn from the results. Our conclusions are
simple: 1) ROLEX is a viable alternative to caching XML

files in the application-tier and 2) the virtual DOM approach
is likely to dominate the performance of XML middleware
supporting only an XML text interface. Of course, the ap-
plication can consider caching their documents as memory-
resident DOM objects, which can be traversed very quickly.
We plan to compare the in-memory performance of DOM



0

2000

4000

6000

8000

10000

12000

14000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e 
in

 m
ill

is
ec

on
ds

Probability of exploring <avail> nodes

DOM
IDOM

ROLEX

Figure 11: ROLEX vs. parsing of view query in Figure 8

to retraversal of an evaluated query in future work, but an-
ticipate that DOM-like pointer structures might be required
to match this performance. Finally, we note that complex
(e.g., aggregate) queries with small output can always be
constructed such that query execution would be arbitrar-
ily worse than parsing (but ROLEX will not necessarily be
worse than middleware solutions which also need to exe-
cute the query). However, such queries are typically part of
OLAP workloads, not the OLTP workloads at which ROLEX

is targeted.

8 Related Work
This work is closely related to previous work on publish-
ing relational data as XML views [5, 9]. These middleware
systems propose a view-definition language to specify the
mapping betwen XML and relational data, and compose
application queries with the view definition, a model that
we have adapted in ROLEX. In terms of the schema-tree
notation, these middleware systems transform application
queries into SQL queries using outer unions among the tag
queries corresponding to sibling nodes in the schema-tree
and outer joins between queries corresponding to parent
and child nodes. The optimization of this query is then left
to the underlying database optimizer, and the tuple stream
obtained as the output of the query is tagged to produce the
XML result document.

Our approach differs substantially from [5, 9]. First,
the results produced by the above middleware systems al-
most invariably require parsing by the application and are
cached by the application. In the ROLEX approach, support
for virtual DOM eliminates the need for tagging and pars-
ing, and has the potential of providing database consistent
views of the data more easily. Second, these systems as-
sume that the result of the query is output in full and do not
consider DBMS mechanisms to support navigation over the
output document. In our approach, the optimizer is cog-
nizant of navigation profiles, and the optimized plan has
lower expected resource utilization.

In [10], the authors present an optimization model for
declaratively specified web-sites. This work conceptual-

izes a web-site as a graph, and associates a parametric
query with each arc. It models the probability distribution
of reaching each node, and the conditional probability of
traversal of an arc given that the parent has been traversed.
While from a different domain, their work bears on trans-
forming and optimizing XML-view queries, and like our
work models navigation probabilities. However, the sys-
tem described in [10] is built outside the DBMS and based
on heuristics; thus it does not define an optimization space.

Virtual mediators (or information integrators over het-
erogenous backends) proposed in [17] translate client
navigation into navigations on lower-level mediators or
wrapped sources. This can be thought of as the client-
side counterpart of the virtual DOM mechanism discussed
in the paper. A major distinction of our work from [17]
is that they focus on lazy execution (rather than optimiza-
tion) for heterogeneous sources while we optimize XML-
view queries against local relational data taking naviga-
tional profiles into account. In [1, 7], XML documents are
mapped to an object-oriented data model, and the DOM in-
terface is directly supported by the database, which pro-
vides persistence, transactions, indexing, etc. However,
these systems do not provide relational interoperability and
do not optimize queries for navigational profiles.

9 Conclusion and Future Work

Increasingly, relational databases support simultaneous
“OLTP” access via SQL and XML interfaces. ROLEX pro-
vides a novel approach to resolving this duality by offering
the ability to access live, non-materialized XML views of
relational data, directly and efficiently, through a naviga-
ble virtual DOM interface. As a result, the system avoids
the overhead of tagging and parsing that limits the perfor-
mance of existing middleware systems.

Through its support for navigational access, ROLEX is
able to return DOM subtrees lazily as the application ex-
ecutes. Further, ROLEX accepts a navigational profile as-
sociated with a view query and uses this profile in a cost-
based optimizer to choose a best-cost navigational query
plan. The novel optimization plan-space includes a variety
of correlated and decorrelated executions of each subquery,
using VOLCANO’s common sub-expression detection to
prevent a blow-up in optimization complexity. Further, the
optimizer aggressively materializes sub-expressions across
repeated calls, and this is reflected in our cost model for
deeply nested, navigable, correlated queries. The current
ROLEX system prototype was used in an experimental study
to show that accounting for navigation can lead to far bet-
ter plans than assuming full materialization, and that plans
optimized for a given probability work reasonably well at
“nearby” probabilities. We also evaluated how navigational
profiles interacted with query-tree complexity by optimiz-
ing a more complex query over a large space of such pro-
files. As probabilities were varied along more edges, the
number of “best” plans found by the optimizer grew sub-
stantially, suggesting that the importance of optimizing for
navigation will grow along with the complexity of XML ap-



plications.
Although the focus of this paper is on optimization and

performance, the ROLEX architecture has other benefits as
well – benefits to be exploited fully as part of future re-
search. Most noteworthy among these is the ability to fa-
cilitate the maintenance of data consistency despite access
by both relational and XML applications to the data. Since
ROLEX views reference the relational data itself, the con-
currency control of the relational database system can be
employed to enforce whatever isolation level is deemed ap-
propriate for the application. Any updates generated by an
application using an XML view face the semantic issues of
view update that face any relational system, but avoid the
data-currency problems that arise in current cache-based
XML-publishing systems. In addition to addressing up-
date consistency, we plan to address 1) more complex nav-
igational profiles, 2) multi-query optimization strategy in
complex XML views, and 3) the potential benefits of push-
ing functionality from an XSLT processor working on the
ROLEX virtual DOM interface into the query engine.

Finally, initial experimental results comparing execution
of ROLEX queries to parsing the results of those queries
from XML show that ROLEX has the ability to eliminate
caches of XML data drawn from the DBMS by supporting
optimized views. In doing this, ROLEX has the potential
to bring database technology to the front-line of electronic-
commerce implementations.

Acknowledgements
The authors would like to thank Prasan Roy for support of
the VOLCANO-style optimizer on which ROLEX is based.

References
[1] S. Abiteboul et al. XML repository and active views demon-

stration. In Proc. of 25th Int’l. Conf. on Very Large Data
Bases. Morgan Kaufmann, 1999.

[2] J. Baulier et al. DataBlitz storage manager: Main memory
database performance for critical applications. In Proc. of
the ACM SIGMOD Int’l. Conf. on the Management of Data,
1999. Industrial track paper.

[3] P. Bohannon, J. Freire, P. Roy, and J. Simeón. From XML
schema to relations: A cost-based approach to XML storage.
In Proc. of Int’l Conf. on Data Engineering, 2002.

[4] P. Bohannon, H. Korth, and P. P. S. Narayan. The table and
the tree: On-line access to relational data through virtual
XML documents. In Proc. of WebDB, 2001.

[5] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasun-
daram, E. Shekita, and S. Subramanian. XPERANTO: Pub-
lishing object-relational data as XML. In Proc. of the Third
Int’l. Workshop on the Web and Databases, 2000.

[6] U. Dayal. Of nests and trees: A unified approach to pro-
cessing queries that contain nested subqueries, aggregates,
and quantifiers. In Proc. of Int’l Conf. on Very Large Data
Bases, 1987.

[7] eXcelon Corporation. An XML data server
for enterprise web applications. (White Paper)
www.exceloncorp.com/products/white papers.html.

[8] M. Fernández, A. Morishima, and D. Suciu. Efficient eval-
uation of XML middle-ware queries. In Proc. of the ACM
SIGMOD Int’l. Conf. on Management of Data, 2001.

[9] M. Fernández, D. Suciu, and W. Tan. SilkRoute: Trading
between relations and XML. In Proc. of the WWW9, 2000.

[10] D. Florescu, A. Levy, D. Suciu, and K. Yagoub. Optimiza-
tion of run-time management of data intensive web sites. In
Proc. of the Int. Conf. on Very Large Data Bases, 1999.

[11] R. A. Ganski and H. K. T. Wong. Optimization of nested
SQL queried revisited. In Proc. of 19th ACM SIGMOD
Conf. on the Management of Data, May 1987.

[12] E. Gelenbe and D. Gardy. The size of projections of re-
lations satisfying a functional dependency. In Proc. of the
Int’l Conf. on Very Large Data Bases, 1982.

[13] G. Graefe and W. McKenna. Extensibility and search effi-
ciency in the Volcano Optimizer Generator. In Proc. of the
IEEE Int’l. Conf. on Data Engineering, 1993.

[14] A. L. Hors, P. L. Hegaret, G. Nicol, J. Robie, M. Champion,
and S. Byrne (Eds). “Document Object Model (DOM) Level
2 Core Specification Version 1.0”. W3C Recommendation,
Nov. 2000. http://www.w3.org/TR/DOM-Level-2-Core/.

[15] W. Kim. On optimizing an SQL-like nested query. ACM
Transactions on Database Systems, 7(3):443–469, Sept.
1982.

[16] A. Labrinidis and N. Roussopoulos. WebView materializa-
tion. In Proc. of the ACM SIGMOD Int’l. Conf. on Manage-
ment of Data, 2000.

[17] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov.
Navigation-driven evaluation of virtual mediated views.
Lecture Notes in Computer Science, 1777, 2000.

[18] OASIS-OPEN. Oasis, the organization for the advancement
of structured information standards. http://www.oasis-
open.org. OASIS-Open web site.

[19] J. Rao and K. A. Ross. Reusing invariants: a new strategy
for correlated queries. In Proc. of the ACM SIGMOD Int’l.
Conf. on Management of Data, 1998.

[20] M. Rhys. State-of-the-art XML support in RDBMS: Mi-
crosoft SQL Server’s XML features. Bulletin of the Tech.
Com. on Data Engineering, 24(2):3–11, June 2001.

[21] Rosetta-Net. Rosettanet: Lingua franca for business.
http://www.rosettanet.org. RosettaNet web site.

[22] P. Roy. Multi Query Optimization and Applications. PhD
thesis, Indian Institute of Technology, Bombay, 2001.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database system. In Proc. of ACM-SIGMOD Int’l Conf. on
Management of Data, 1979.

[24] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query
decorrelation. In Proc. of the 12th International Conference
on Data Engineering, 1996.

[25] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. J.
DeWitt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. In Proc. of
the Int’l. Conf. on Very Large Databases, 1999.

[26] The-Apache-Software-Foundation. Xerces C++ parser.
http://xml.apache.org.

[27] The-Times-Ten-Team. In-memory data management in the
application tier. In Proc. of the 16th Int’l. Conf. on Data
Engineering (ICDE’ 00), 2000.


